Observations on Normal-Fault Scarp Morphology and Fault System Evolution of the Bishop Tuff in the Volcanic Tableland, Owens Valley, California, U.S.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controls of Basement Fabric on Rift Coupling And
1 2 3 4 5 This manuscript is currently undergoing peer-review. Please note that the manuscript is yet to be 6 formally accepted for publication. Subsequent versions of this manuscript may have slightly 7 different content. If accepted, the final version of this manuscript will be available via the ‘Peer- 8 reviewed Publication DOI’ link on the right-hand side of this webpage. Please feel free to contact 9 any of the authors. We look forward to your feedback. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 30 CONTROLS OF BASEMENT FABRIC ON RIFT COUPLING AND DEVELOPMENT 31 OF NORMAL FAULT GEOMETRIES: INSIGHTS FROM THE RUKWA – NORTH 32 MALAWI RIFT 33 34 35 36 37 38 Erin Heilman1 39 Folarin Kolawole2 40 Estella A. Atekwana3* 41 Micah Mayle1 42 Mohamed G. Abdelsalam1 43 44 45 46 1Boone Pickens School of Geology 47 Oklahoma State University 48 Stillwater, Oklahoma, USA 49 50 2ConocoPhillips School of Geology & Geophysics 51 University of Oklahoma 52 Norman, Oklahoma, USA 53 54 3Department of Geological Sciences 55 College of Earth, Ocean, and Environment 56 University of Delaware 57 Newark, Delaware, USA 58 59 *Corresponding author email: [email protected] 60 61 62 63 64 65 66 67 68 69 70 71 72 August 2018 2 73 Highlights 74 • To the SW, newfound strike-slip fault links the Rukwa and North Malawi Rift (RNMRS) 75 • To the NE, RNMRS border faults, intervening faults and volcanic centers are colinear 76 • RNMRS border faults and transfer structures align with pre-existing basement fabrics 77 • Basement fabrics guide the development of normal fault geometries and rift bifurcation 78 • Basement fabrics facilitate the coupling of the RMRS border faults and transfer structures 79 80 81 ABSTRACT 82 The Rukwa Rift and North Malawi Rift Segments (RNMRS) both define a major rift-oblique 83 segment of the East African Rift System (EARS), and although the two young rifts show colinear 84 approaching geometries, they are often regarded as discrete rifts due to the presence of the 85 intervening Mbozi Block uplift located in-between. -
Structural Geology
2 STRUCTURAL GEOLOGY Conventional Map A map is a proportionate representation of an area/structure. The study of maps is known as cartography and the experts are known as cartographers. The maps were first prepared by people of Sumerian civilization by using clay lens. The characteristic elements of a map are scale (ratio of map distance to field distance and can be represented in three ways—statement method, e.g., 1 cm = 0.5 km, representative fraction method, e.g., 1:50,000 and graphical method in the form of a figure), direction, symbol and colour. On the basis of scale, maps are of two types: large-scale map (map gives more information pertaining to a smaller area, e.g., village map: 1:3956) and small: scale map (map gives less information pertaining to a larger area, e.g., world atlas: 1:100 km). Topographic Maps / Toposheet A toposheet is a map representing topography of an area. It is prepared by the Survey of India, Dehradun. Here, a three-dimensional feature is represented on a two-dimensional map and the information is mainly represented by contours. The contours/isohypses are lines connecting points of same elevation with respect to mean sea level (msl). The index contours are the contours representing 100’s/multiples of 100’s drawn with thick lines. The contour interval is usually 20 m. The contours never intersect each other and are not parallel. The characteristic elements of a toposheet are scale, colour, symbol and direction. The various layers which can be prepared from a toposheet are structural elements like fault and lineaments, cropping pattern, land use/land cover, groundwater abstruction structures, drainage density, drainage divide, elongation ratio, circularity ratio, drainage frequency, natural vegetation, rock types, landform units, infrastructural facilities, drainage and waterbodies, drainage number, drainage pattern, drainage length, relief/slope, stream order, sinuosity index and infiltration number. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
4. Deep-Tow Observations at the East Pacific Rise, 8°45N, and Some Interpretations
4. DEEP-TOW OBSERVATIONS AT THE EAST PACIFIC RISE, 8°45N, AND SOME INTERPRETATIONS Peter Lonsdale and F. N. Spiess, University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California ABSTRACT A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several dif- ferent types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fast- spreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outward- facing normal faults, in a zone 12 to 20 km from the axis. -
Structural Evolution of the Northernmost Andes, Colombia
Structural Evolution of the Northernmost Andes, Colombia GEOLOGICAL SURVEY PROFESSIONAL PAPER 846 Prepared in coopeTation ·with the lnstituto Nacional de Investigaciones Geologico-MineTas under the auspices of the Government of Colombia and the Agency for International Development) United States DepaTtment of State Structural Evolution of the Northernmost Andes, Colombia By EARL M. IRVING GEOLOGICAL SURVEY PROFESSIONAL PAPER 846 Prepared in cooperation ·with the lnstituto Nacional de Investigaciones Geologico-Min eras under the auspices of the Government of Colombia and the Agency for International Development) United States Department of State An interpretation of the geologic history of a complex mountain system UNITED STATES GOVERNlVIENT PRINTING OFFICE, vVASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Irving, Earl Montgomery, 1911- Structural evolution of the northernmost Andes, Columbia. (Geological Survey professional paper ; 846) Bibliography: p Includes index. Supt. of Docs. no.: I 19.16:846 1. Geology-Colombia. 2. Geosynclines----Colombia. I. Instituto Nacional de Investigaciones Geologico Mineras.. II. Title. III. Series: United States. Geological Survey. Professional paper ; 846. QE239.175 558.61 74-600149 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $1.30 (paper cover) Stock Number 2401-02553 CONTENTS Page Pasre Abstract ---------------------------------------- -
Surficial-Geologic Reconnaissance and Scarp Profiling on The
Surficial-Geologic Reconnaissance and Scarp Profiling on the Collinston and Clarkston Mountain Segments of the Wasatch Fault Zone, Box Elder County, Utah – Paleoseismic Inferences, Implications for Adjacent Segments, and Issues for Diffusion-Equation Scarp-Age Modeling Paleoseismology of Utah, Volume 15 By Michael D. Hylland SPECIAL STUDY 121 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2007 Surficial-Geologic Reconnaissance and Scarp Profiling on the Collinston and Clarkston Mountain Segments of the Wasatch Fault Zone, Box Elder County, Utah – Paleoseismic Inferences, Implications for Adjacent Segments, and Issues for Diffusion-Equation Scarp-Age Modeling Paleoseismology of Utah, Volume 15 By Michael D. Hylland ISBN 1-55791-763-9 SPECIAL STUDY 121 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2007 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map/Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP Web site: http://mapstore.utah.gov email: [email protected] THE UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: http://geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no war- ranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. -
Interaction Between Normal Faults and Fractures and Fault Scarp Morphology
GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 19, PAGES 3777-3780, OCTOBER 1, 2001 Interaction between normal faults and fractures and fault scarp morphology George E. Hilley1,JRam´on Arrowsmith, and Lee Amoroso Department of Geological Sciences, Arizona State University, Tempe, Arizo na Abstract. Fault slip and geomorphic surface processes cre- opening along the fractures; the presence of fractures in the ate and modify bedrock normal fault scarps. Our field stud- near surface results in larger total offset for a constant stress iesand numerical modelsshow that mechanical interaction drop than a fault in isolation. between near-surface fracturesand active faultsmay dimin- To illustrate the mechanical analysis, we studied active ish scarp slopes and broaden deformation near the surface. fault scarps along low slip rate graben-bounding faults of In our models, increasing fracture density and depth reduces the southern Colorado Plateau that expose pervasively frac- and complicates the scarp’s topographic expression. Frac- tured rocks of the Permian Kaibab Formation and Triassic ture depth and density, and orientation of the structures Moenkopi Formation. Our field observations show irregu- control the location and magnitude of zonesof positive and lar topography resulting from distributed deformation along negative shear displacements along the fractures. Our field near-surface fractures. Thus, irregular fault scarp morpholo- studies of the interaction of active graben bounding normal gies do not require surface transport processes to redis- faultsand fracturesin Northern Arizona illustrate the me- tribute material and instead may result from near-surface chanical analysis. Reduction in scarp slopes and broadening distributed deformation. of the deformation field may cause incorrect interpretations of shallow bedrock scarp morphologies as old, rather than Fractures in the vicinity of a slipping as the result of slip along fractures around the fault. -
The Geology of the Burke Quadrangle, Vermont
THE GEOLOGY OF THE BURKE QUADRANGLE, VERMONT By BERTRAM G. WOODLAND off tC 200 STE STREET VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, State Geologist Published by VERMONT DEVELOPMENT DEIARTMENT MONTPELIER, VERMONT BULLETIN No. 28 1965 - Fiure 1. Fiontispie c Burke Mountain, Umpire \Iountain (left), and the northern spur of Kirby Mountain right) are resistant e-'se' of homteled Gilc \lount'&in fonuttion jj nuuite. View southeist\vards from near Marshall Swhool. TABLE OF CONTENTS PAGE ABSTRACT 9 INTRODUCTION ...................... 10 Location ........................ 10 Methods of study .................... 10 Acknowledgments .................... 12 Physiography ...................... 14 Settlement ....................... 17 Previous work ..................... 18 STRATIGRAPHY ...................... 19 General statement .................... 19 Thicknesses ..................... 19 Age of formations ................... 20 Sequence ....................... 20 Albee Formation ..................... 21 Amphibolite ...................... 22 Waits River Formation ................. 23 Impure limestone ................... 23 Pelitic rocks . . . . . . . . . . . . . . . . . . . . 24 Psammitic beds .................... 25 Amphibolite ...................... 27 Light-colored hornblende quartzose bands . . . . . . . 31 Meta-acid igneous rocks ................ 31 Gile Mountain Formation ................. 34 Quartzose phvllite ....................35 Pelitic rocks ...................... 39 Amphibolite . . . . . . . . . . -
The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA
The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA by Darby Patrick Scanlon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: John Bershaw, Chair Ashley R. Streig Ray E. Wells Portland State University 2019 © 2019 Darby Patrick Scanlon ABSTRACT The Portland and Tualatin basins are part of the Puget-Willamette Lowland in the Cascadia forearc of Oregon and Washington. The Coast Range to the west has undergone Paleogene transtension and Neogene transpression, which is reflected in basin stratigraphy. To better understand the tectonic evolution of the region, I modeled three key stratigraphic horizons and their associated depocenters (areas of maximum sediment accumulation) through space and time using well log, seismic, outcrop, aeromagnetic, and gravity data. Three isochore maps were created to constrain the location of Portland and Tualatin basin depocenters during 1) Pleistocene to mid-Miocene (0-15 Ma), 2) eruption of the Columbia River Basalt Group (CRBG, 15.5-16.5 Ma), and 3) Mid- Miocene to late Eocene time (~17-35 Ma). Results show that the two basins each have distinct mid-Miocene to Pleistocene depocenters. The depth to CRBG in the Portland basin reaches a maximum of ~1,640 ft, 160 ft deeper than the Tualatin basin. Although the Portland basin is separated from the Tualatin basin by the Portland Hills, inversion of gravity data suggests that the two were connected as one continuous basin prior to CRBG deposition. Local thickening of CRBG flows over a gravity low coincident with the Portland Hills suggests that Neogene transpression in the forearc reactivated the Sylvan- Oatfield and Portland Hills faults as high angle reverse faults. -
UGS Special Study
Paleoseismology of Utah, Volume 14 PALEOSEISMIC INVESTIGATION AND LONG-TERM SLIP HISTORY OF THE HURRICANE FAULT IN SOUTHWESTERN UTAH by William R. Lund1, Michael J. Hozik2, and Stanley C. Hatfield3 1Utah Geological Survey 88 Fiddler Canyon Road, Suite C Cedar City, UT 84720 2The Richard Stockton College of New Jersey P.O. Box 195, Pomona, NJ 08240-0195 3Southwestern Illinois College 2500 Carlyle Ave., Belleville, IL 62221 Cover Photo: Scarp formed on the Hurricane fault at Shurtz Creek about 8 km south of Cedar City. ISBN 1-55791-760-4 SPECIAL STUDY 119 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2006 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map/Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP Web site: http://mapstore.utah.gov email: [email protected] THE UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: http://geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur- vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability. -
Surficial Geologic Map of the Levan and Fayette Segments of the Wasatch Fault Zone, Juab and Sanpete Counties, Utah
SURFICIAL GEOLOGIC MAP OF THE LEVAN AND FAYETTE SEGMENTS OF THE WASATCH FAULT ZONE, JUAB AND SANPETE COUNTIES, UTAH by Michael D. Hylland and Michael N. Machette ISBN 1-55791-791-4 MAP 229 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2008 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll free: 1-888-UTAH MAP Web site: mapstore.utah.gov email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur- vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability. For information or complaints regarding discrimination, contact Executive Director, Utah Department of Natural Resources, 1594 West North Temple #3710, Box 145610, Salt Lake City, UT 84116-5610 or Equal Employment Opportunity Commission, 1801 L. Street, NW, Washing- ton DC 20507. -
Relations Between Hinterland and Foreland Shortening Sevier Orogeny
TECTONICS, VOL. 19, NO. 6, PAGES 1124-1143 DECEMBER 2000 Relations between hinterland and foreland shortening: Sevier orogeny,central North American Cordillera WandaJ. Taylor •, JohnM. BartIcy2,Mark W. Martin3, John W. Geissmann, J.Douglas Walker •, Phillip A. Armstrong6,and Joan E. Fryxell7 Abstract. The tectonic relations between foreland and hinterland betweencentral Nevada and Utah thrusts,or that the Utah thrusts deformationin noncollisionalorogens are criticalto understanding persistinto southeastern Nevada but are located east of thelongitude theoverall development of orogens.The classiccentral Cordilleran of the central Nevada thrust belt. As a result of overall cratonward forelandfold-and-thrust belt in the United States(Late Jurassicto migrationof thrusting,the centralNevada thrust belt probably earlyTertiary Sevier belt) andthe moreinternal zones to the west formed the Cordilleran foreland fold-thrust belt early in the (centralNevada thrust belt) providedata critical to understanding shorteningevent but later lay in thehinterland of theSevier fold- the developmereof internaland externalparts of orogens. The thrustbelt of Idaho-Wyoming-Utah. GardenValley thrustsystem, part of the centralNevada thnkst belt, crops out in south-centralNevada within a region generally considered to be the hinterland of the Jurassic to Eocene Sevier 1. Introduction thrustbelt. The thrustsystem consists of at leastfour principal Manyinvestigations in the North American Cordillera and the thrustplates composed of strataas youngas Pennsylvanianin age