Effects of Dopamine and Glutamate on Synaptic

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Dopamine and Glutamate on Synaptic S62 Original Paper Eff ects of Dopamine and Glutamate on Synaptic Plasticity: A Computational Modeling Approach for Drug Abuse as Comorbidity in Mood Disorders Authors Z. Qi 1 , 2 , 3 , S. Kikuchi 1 , 3 , F. Tretter 4 , E. O. Voit 1 , 3 Affi liations 1 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA 2 Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA 3 Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA 4 Isar-Amper-Klinikum gemeinnü tzige GmbH, Klinikum M ü nchen-Ost, Haar, Landkreis M ü nchen, Germany Abstract signals with synaptic depression. Concurrent ▼ dopamine and glutamate signals cause various Major depressive disorder (MDD) aff ects about types of synaptic plasticity, depending on input 16 % of the general population and is a leading scenarios. Interestingly, the model shows that a cause of death in the United States and around single 0.5 mg / kg dose of amphetamine can cause the world. Aggravating the situation is the fact synaptic potentiation for over 2 h, a phenomenon that “ drug use disorders ” are highly comorbid in that makes synaptic plasticity of medium spiny MDD patients, and vice versa . Drug use and MDD neurons behave quasi as a bistable system. The share a common component, the dopamine sys- model also identifi es mechanisms that could tem, which is critical in many motivation and potentially be critical to correcting modifi ca- reward processes, as well as in the regulation of tions of synaptic plasticity caused by drugs in stress responses in MDD. A potentiating mecha- MDD patients. An example is the feedback loop nism in drug use disorders appears to be synap- between protein kinase A, phosphodiesterase, tic plasticity, which is regulated by dopamine and the second messenger cAMP in the post- transmission. In this article, we describe a com- synapse. Since reward mechanisms activated by putational model of the synaptic plasticity of psychostimulants could be crucial in establishing GABAergic medium spiny neurons in the nucleus addiction comorbidity in patients with MDD, this accumbens, which is critical in the reward sys- model might become an aid for identifying and tem. The model accounts for eff ects of both targeting specifi c modules within the reward dopamine and glutamate transmission. Model system and lead to a better understanding and simulations show that GABAergic medium spiny potential treatment of comorbid drug use disor- neurons tend to respond to dopamine stimuli ders in MDD. with synaptic potentiation and to glutamate Introduction the orbitofrontal cortex that exhibits reduced Bibliography ▼ behavioral inhibition, and the amygdala that is This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. DOI http://dx.doi.org/ Mood disorder is mainly characterized by a dis- related to elevated impulsive behavior (● ▶ Fig. 1a ). 10.1055/s-0031-1273707 turbance in a patient ’ s mental well-being and In addition, pharmacological studies have shown Pharmacopsychiatry 2011; includes major depressive disorder (MDD) and that several transmitter systems are involved in 44 (Suppl. 1): S62 –S75 bipolar disorder. MDD is regarded as a leading the symptomatology of depressive disorders. © Georg Thieme Verlag KG cause of death world-wide with an estimated Defi cits in norepinephrinergic, serotonergic and Stuttgart · New York ISSN 0176-3679 prevalence of 16 % in the United States [26, 39] . dopaminergic neurotransmission are well known Neuropsychiatry already has identifi ed several [65] , a hyperfunction of the cholinergic system Correspondence macroanatomic brain structures and circuits by was proposed [24] , and lately also a GABA hypo- E. O. Voit, PhD imaging studies and deep brain stimulation that function hypothesis and a glutamate hyperfunc- 313 Ferst Drive are involved in the clinical phenomenology of tion hypothesis were discussed [30, 32, 60] . Department of Biomedical mood disorders [3, 13, 35 – 38, 47] : the prefrontal Although the etiology of MDD is not well under- Engineering cortex that is responsible for impaired cognitive stood, it has been suggested from a biochemical GA 30332-0535 Atlanta operations, the nucleus accumbens that is related point of view that monoamines and the hypotha- USA Tel.: + 1 / 404/ 385 5057 to loss of hedonic states, the hippocampus with lamic-pituitary-adrenal (HPA) axis in human Fax: + 1 / 404 / 894 4243 its memory dysfunctions, the striatal complex brain are important contributors [33, 53] . Briefl y, [email protected] that is involved in reduced psychomotor action, the HPA axis responds to stress with the release Qi Z et al. Eff ects of Dopamine and Glutamate on Synaptic Plasticity … Pharmacopsychiatry 2011; 44 (Suppl. 1): S62– S75 Original Paper S63 vation and reward, as well as its contribution to anhedonia, indi- a Attention Cortex planning rect support for the involvement of DA comes from Prefrontal Reward- pharmacological observations. Reserpine depletes monoamine cortex associated stimuli Sensory Orbitofrontal Anterior Thalamus and can cause depressive symptoms in some patients. Iproniazid cortex cingulum systems Valuation inhibits the degradation of monoamine by monoamine oxidase Impulse inhibition Memory and improves depressive moods, while imipramine blocks the Motor reuptake of monoamine and can have an antidepressant eff ect. Hippocampus Striatum systems While these observations are mainly associated with norepine- Impulsive behavior Reward phrine and serotonin, DA also belongs to the class of monoam- Nucleus Amygdala accumbens ines and shares almost the same metabolic pathway with norepinephrine. In fact, DA is the precursor of norepinephrine. Limbic system Thus, antidepressant drugs should be expected to act on the DA system, especially by interfering with DA reuptake. Taking these Midbrain fi ndings into account, the DA system and its transmission might ventral Substantia tegmentum nigra be of crucial importance for the comorbidity of drug use disor- ders in MDD [65] . Although drug use disorders have been studied for a long time, Fig. 1a Macroanatomic brain circuitry related to symptoms of depres- sion as a local malfunctioning of certain brain regions. The diagram shows our understanding of its governing processes is still rather lim- the main focus of the computational modeling study, namely the nucleus ited. One underlying mechanism seems to be the synaptic plas- accumbens and its associated projections from the ventral tegmental ticity of neuronal pathways that are involved in reward and area and the prefrontal cortex (highlighted in blue). Dashed arrows: learning, and a corresponding hypothesis states that addictive dopamine projections. Anterior cingulum = anterior cingulated cortex, drug use is a form of “ pathological learning ” [22, 23, 25] . Synap- ventral tegmentum = ventral tegmental area. tic plasticity is the capability of a synapse to adjust its connec- tion strength by changing the amount of released neurotransmitters and / or modifying the effi cacy of its response of pro-infl ammatory cytokines. The stress response is regulated to neurotransmitter stimulation [15] . The intensity of a response by the monoamine system, and disturbed monoamine transmis- to neurotransmitters is determined by the density of postsynap- sion therefore impairs the regulation of stress responses. Thus, tic receptors and by receptor conductance. functional disorders of monoamine transmission, the HPA axis, In this study, we focus on the DA system and the eff ects of DA and stress together contribute to MDD [51] . transmission on synaptic plasticity, which is hypothesized as an Two types of monoamines, norepinephrine and serotonin, have underlying mechanism for addictive drug use. The nucleus been the primary subject of investigation in the context of MDD. accumbens (NAc) is selected as locus of interest because the In comparison, dopamine (DA) has attracted less attention, mesolimbic DA pathway is critical to reward and addictive drug although DA transmission is very important for the disorder as use [69] . NAc is located in the ventral striatum and receives well. For instance, one of the 2 required symptoms of MDD in the inputs for basal ganglia, and it is a component of the important criteria of the Diagnostic and Statistical Manual of Mental Disor- cortico-striato-pallido-thalamo-cortical loop. In addition to ders [1] is anhedonia with a prevalence of almost 40 % among dopamine input, NAc also receives glutamate projections from MDD patients [46] . Anhedonia is the inability to experience the cortex that can aff ect eff ects of DA transmission on synaptic enjoyment from activities that had been pleasurable before, and plasticity. The mechanisms for regulating synaptic plasticity a reduction in DA transmission in the nucleus accumbens has involve both sides of a synapse, that is, the presynapse and the been suggested as the cause [3, 38, 75 – 77] . Because DA plays an postsynapse. Metabolic processes in the presynapse determine important role in motivation and reward, the reduction in DA the amount of released neurotransmitters through the control of transmission, and the correspondingly reduced reward, can enzymatic reactions and the recycling of neurotransmitter directly contribute to comorbidity between drug use and MDD between diff erent compartments. On the postsynaptic side, the [42] . Indeed, this association has been reported for quite some density and conductance
Recommended publications
  • Memorandum „Reflexive Neurowissenschaft“
    Memorandum „Reflexive Neurowissenschaft“ Vor 10 Jahren, im Jahr 2004 wurde der Öffentlichkeit ein Manifest von Neurowissenschaftlern präsentiert, das eine äußerst optimistische Zukunftsperspektive der Hirnforschung erkennen ließ. Unter anderem sollten neue Neurotechnologien die Enträtselung des Gehirns und damit des Geistigen ermöglichen, und für die klinische Praxis sollten bald effektivere und nebenwirkungsärmere Psychopharmaka entwickelt werden. Schließlich sollte ein neues, wissenschaftlich fundiertes Menschenbild entstehen. Die heutige Bilanz fällt aus unserer Sicht allerdings eher enttäuschend aus. Eine Annäherung an gesetzte Ziele ist nicht in Sicht. Die Ursachen dafür gehen weit über organisatorisch-technische Schwierigkeiten hinaus und liegen einerseits an Schwächen im Bereich der Theorie der Neurowissenschaft, andererseits an zu wenig durchdachten naturalistischen Vorannahmen und Konzepten, die wünschenswerte Brückenschläge zur Psychologie, Philosophie und Kulturwissenschaft nachhaltig erschweren. Bereits die oftmals unzulängliche Unterscheidung von notwendigen und hinreichenden Bedingungen hat auf vielen Feldern zur Überschätzung eigener Erklärungsansprüche geführt: Selbstverständlich ist ohne Gehirn alles nichts, aber das Gehirn ist nicht alles, denn es benötigt den Körper, und der Körper benötigt die Umwelt. Aussagen wie „Psychische Prozesse beruhen auf Gehirnprozessen“ führen uns nicht weiter, denn psychische Prozesse benötigen auch die Atmung, den Blutkreislauf usw. Auch die Verkürzung der Psychologie auf alltagsweltliche
    [Show full text]
  • Methodological Problems on the Way to Integrative Human Neuroscience
    University of Groningen Methodological Problems on the Way to Integrative Human Neuroscience Kotchoubey, Boris; Tretter, Felix; Braun, Hans A; Buchheim, Thomas; Draguhn, Andreas; Fuchs, Thomas; Hasler, Felix; Hastedt, Heiner; Hinterberger, Thilo; Northoff, Georg Published in: Frontiers in Integrative Neuroscience DOI: 10.3389/fnint.2016.00041 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kotchoubey, B., Tretter, F., Braun, H. A., Buchheim, T., Draguhn, A., Fuchs, T., Hasler, F., Hastedt, H., Hinterberger, T., Northoff, G., Rentschler, I., Schleim, S., Sellmaier, S., Tebartz Van Elst, L., & Tschacher, W. (2016). Methodological Problems on the Way to Integrative Human Neuroscience. Frontiers in Integrative Neuroscience, 10, [41]. https://doi.org/10.3389/fnint.2016.00041 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • The Human Ecological Perspective and Biopsychosocial Medicine
    International Journal of Environmental Research and Public Health Article The Human Ecological Perspective and Biopsychosocial Medicine Felix Tretter 1 and Henriette Löffler-Stastka 2,* 1 German Society for Human Ecology, A-1040 Wien, Austria; [email protected] 2 Department of Psychoanalysis and Psychotherapy, Medical University Vienna, 1090 Vienna, Austria * Correspondence: henriette.loeffl[email protected] Received: 27 September 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: With regard to philosophical anthropology, a human ecological framework for the human–environment relationship as an “ecology of the person” is outlined, which focuses on the term “relationship” and aims to be scientifically sound. It also provides theoretical orientations for multiprofessional clinical work. For this purpose, a multi-dimensional basic grid for the characterization of the individual human being is proposed. The necessity and meaningfulness of a differentiation and systematization of the terms “environment”, and above all “relationship”, are demonstrated, and practical examples and links to similar framework models are given. Keywords: human–environment; relationship; professionalism; competence; mental health; psychic development; change processes; therapists and medical doctors; socialization; lifestyle 1. Integrative Concepts of Health and Disease by Human Ecological Medicine More than 40 years ago, George L. Engel [1] proposed his influential view of a three-dimensional bio–psycho–social systems model that helps understand health and disease in the context of “psychosomatics”. In parallel, the issue of “environmental health” came up, emphasizing the health effects of the physico-chemical environment. At present, “theory-free” multifactorial analyses and models dominate epidemiological research and biochemical experiments consolidate current medical knowledge. In order to re-establish a multi-facetted but integrated theoretical view on health and disease, a human–ecological framework is proposed.
    [Show full text]
  • Systems Neuropsychiatry of Stress, Anxiety and Addiction
    Systems Neuropsychiatry of Preamble One special role is played by the endocannabinoid Stress, Anxiety and Addiction Today, neuropsychiatry is facing the challenge to system, which is mainly inhibiting the electrical ‘understand’ an overwhelming amount of data. It is reactivity of the respective neuron and even has - an integrated view – assumed that empirical findings can ‘explain’ clinical retrograde presynaptic signalling properties. phenomena and lead the development to new Additionally, the intracellular molecular signalling therapeutic tools. However, ‘complexity’ and ’dynamics’ network, connected to dopamine signalling May, Fri 03 / Sat 04, 2013 of the brain are the methodological key challenges for pathways, is analysed by exploratory computational th current theories in neurobiology which need new models. Finally, the interplay between the genome, 9 International Workshop on approaches for understanding. We think this approach the proteome, the transcriptome and the epigenome Computational Neuropsychiatry could be based on systems methodology. Systems (Nestler) is being explored. methodology can be characterised by a multi-level The symposium aims to find a better understanding Alcohol approach, by mathematical tools of complexity of the pathways from stress and anxiety to reduction and formal and computational modelling, addiction, as one of the most important public NOREPINEPHRINE ACETYLCHOLINE aiming at computer-based in-silico experimentation. The health issues. systems approach is closely related to in-vivo and in-vitro experimentation developing its ideas in an Contact: F. Tretter SEROTONIN GLUTAMATE iteractive way. In this field systems scientists, Phone: ++49-89-4562-3708 Fax: -3754 DOPAMINE Email: [email protected] GABA experimental neurobiologists and clinicians work together in order to improve the understanding of mental Registration (no registration fee): Department of Psychiatry disorders on a biological basis.
    [Show full text]
  • Felix Tretter (BCSSS), Bertalanffy Center for the Study of Systems Science (BCSSS) [email protected]; Mobil: 0043 660 6270 666
    Report on BCSSS-WS III - EVALUATING HEALTH-RELATED ICT (hICT) Author: Felix Tretter (BCSSS), Bertalanffy Center for the Study of Systems Science (BCSSS) [email protected]; Mobil: 0043 660 6270 666 Tuesday June 4th t / Wednesday June 5th 2019 1040 Vienna, Paulanergasse 13 / Top 5 EVALUATING HEALTH-RELATED ICT (hICT) The aim of the workshop was to find out the limits of truth production by big data regarding health issues. The workshop continues the work that was initiated at a basic workshop in October 2018 which was designed to discover general epistemological issues of big data. Several topics were discussed: The basic goal of the series of BCSSS workshops on (human) digitization is to make cyber- systemic perspectives of living systems explicit (http://www.bcsss.org/2018/big-data- epistemological-requests-of-systems-science, 2018). Health and the health care system are therefore also important issues. The aim of the previous workshops (WS I-II) was to examine the epistemic value of individual features of the digitization of our society, especially with regard to Big data as processing technology, but also with regard to sensor and tracking technologies and analysis technologies (e.g. AI) and, in the future, also for robotics as effector technology with an increasing focus on health issues. It is therefore a question of an analytical evaluation of everything that is communicated for digitalization. For the following, it should be noted that the more concrete but general term "Health Information and Communications Technology (Assessment)" (HICTA), which we prefer, has the same meaning as the more common term "Digital Health Technology (Assessment)" (DHT or DHTA).
    [Show full text]
  • Felix Tretter (BCSSS), Bertalanffy Center for the Study of Systems Science (BCSSS) [email protected]; Mobil: 0043 660 6270 666
    Report on BCSSS-WS II - EPISTEMOLOGY OF BIG DATA: HEALTH AND HEALTH CARE Author: Felix Tretter (BCSSS), Bertalanffy Center for the Study of Systems Science (BCSSS) [email protected]; Mobil: 0043 660 6270 666 Thursday April 4th t / Friday April 5th 2019 1040 Vienna, Paulanergasse 13 / Top 5 THE “TRUTH” ABOUT HEALTH AND DISEASE BY BIG DATA The aim of the workshop was to find out the limits of truth production by big data regarding health issues. The workshop continues the work that was initiated at a basic workshop in October 2018 which was designed to discover general epistemological issues of big data. Several topics were discussed: 1. Big data effects on health, health knowledge and health literacy Monitoring a whole population regarding health issues by wearables, health apps, health platforms and other pathways of data gathering is supposed to lead to a “real“ understanding of health and disease. This results in Big data (BD), and this development seems to have a reasonable goal of Public Health in order to increase the health level in the population. However, as everybody knows, the drivers of this approach are economic aspects that also intend to monopolize “health knowledge” for the data, information or knowledge market. First independent scientific studies show a lack of quality control of health information and communication technologies (ICT; SVSR 2016). There is also a high degree of intransparency regarding the definition of “health” that is reduced to some measureable aspects of lifestyle. BD inverts the epistemic problem to define “health” by using measureable data and calling them “health”.
    [Show full text]
  • Saliency from the Decision Perspective: Inferring the Processing Architecture of Pre-Attentive Vision with Mental Chronometry
    Saliency from the decision perspective: Inferring the processing architecture of pre-attentive vision with mental chronometry Michael Zehetleitner M¨unchen 2007 Saliency from the decision perspective: Inferring the processing architecture of pre-attentive vision with mental chronometry Michael Zehetleitner Dissertation an der Fakult¨atf¨urPsychologie und P¨adagogik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Michael Zehetleitner aus Kempten im Allg¨au M¨unchen, den 2. November 2007 Erstgutachter: Prof. Dr. Hermann J. M¨uller Zweitgutachter: Prof. Dr. Joseph Krummenacher Tag der m¨undlichen Pr¨ufung: 20. Dezember 2007 To Norbert Bischof, without whom not. vi ACKNOWLEDGMENTS Norbert Bischof, in his lectures and in personal communication, ignited my cu- riosity for animal and human psychology and provided me with a psychological and philosophical framework as footholds for investigating such issues. Additionally his cybernetic, supported by Felix Tretter’s system theoretical approach influenced my thinking intensly. In particular, I would like to thank my mentor and supervisor of this thesis, Her- mann M¨uller,for focussing my mind to the art of psychological experimentation and for providing me with the freedom to pursue very interesting questions answerable with mental chronometry. I thank Joseph Krummenacher for introducing me to the redundant-signals paradigm and being my contact person for experimental, writing, or statistical questions from the beginning of my studies of neuro-cognitive psychol- ogy. Being part of a large unit of colleagues also was of great help for developing and discussing experiments, as well as for gaining new insights. Specifically, I would like to mention Thomas Geyer, Thomas T¨ollner, Zhuanghua Shi, and Dragan Rangelov for valuable discussions and input for this thesis.
    [Show full text]
  • Part One Introduction
    Part One Introduction Part I presents an introduction to the basic issues of psychiatry. Chapter 1 on philosophical aspects by Felix Tretter delineates some aspects of the historical development of science and philosophy. Focus is on philosophy of mind, philosophy of science, and neurophilosophy – special fields of fundamental importance for reflection of psychiatry, its concepts, its methods, and its theories. This chapter also describes the rise of philosophy in biology and systems biology. The second basic chapter, Chapter 2 by Felix Tretter and Peter Gebicke-Haerter, gives an overview on general psychiatry, beginning with an introduction into the methods, diagnostics, and therapy of mental disorders. The main part is an intro- duction to the neurobiological basis of modern psychiatry. Brain anatomy, cellular physiology, and molecular mechanisms are briefly outlined, and examples are given by referring to findings in schizophrenic patients. Finally, first attempts at computational modeling are presented, mainly with respect to working memory functions in schizophrenia. Subsequently, in Chapter 3, Marvin Schulz and Edda Klipp provide a brief but comprehensive outline of systems biology from a biochemical point of view. The reader will find methods used in the wet laboratory of biochemists and also methods from the dry laboratory of computational scientists. Chapter 4 provides an overview by one of the pioneers of systems biology, Denis Noble. From his seminal work on the heart, he extends the view to systems biology of the brain. He also includes a brief outlook on the philosophical dimension of his research project. Systems Biology in Psychiatric Research. Edited by F. Tretter, P.J.
    [Show full text]
  • Image of Men in Posthumanism and Transhumanism of Information Society
    Proceedings Image of Men in Posthumanism and Transhumanism of Information Society Felix Tretter Bertalanffy Center for the Study of Systems Science, Paulanergasse 13/5, 1040 Vienna (Austria); felix.tretter@bas-muenchen-de Abstract:Protecting human health and understanding the effects of information society on humans implicates a reference model of the essentials and “normal” functions of human beings. Such models are simply called “images of men” (“Menschenbilder”). In this paper, common concepts of men are mentioned and it is outlined that an image of men is a paradoxical construct. Especially Homo deficiens (Gehlen) and the natural artificiality (Plessner) are the roots of technophilia of humans that is one important driver of Information and Communication Technology (ICT). The other main driver is the efficiency-oriented modern society that provides such tools. One field is neuropsychiatry where monitoring of the mental and brain state for diagnosis and therapeutic modification by chemical and electrical tools is developing very fast. On the other hand, ICT already has some negative health implications in respect of internet addiction or digital dementia. These aspects of ICT society are discussed regarding the question of change of humans and of change of their image. Keywords: Homo informaticus; image of men; neuropsychiatry 1. Image of Men An image of men is partially a paradoxial concept as it is constructed by humans about humans. Additionally, cultural factors (political issues, economic interests, religious concepts) influence the classification of humans. Also such generalizations have a dubious and biased empirical basis as, for instance, we don't know enough details about the approximate 7 billion humans on earth.
    [Show full text]
  • Systems Medicine by Prof. Dr.Dr.Dr. Felix Tretter Prof
    We heartily invite you to participate in the Bertalanffy Lecture 2014: Systems Medicine by Prof. Dr.Dr.Dr. Felix Tretter The Bertalanffy Center for the Study of Systems Science welcomes the renowned expert Prof. Tretter and invites you to join us for the Bertalanffy Lecture 2014 on Systems Medicine on Friday, 19th December 2014, 15:00 at the Bertalanffy Center for the Study of Systems Science, Paulanergasse 13/5, 1040 Vienna, Austria. The talk by Prof. Tretter will present his advanced systemic perspective on current developments in the new field of systems medicine, and a critical view on the opportunities and risks of the impacts on the pharmaceutical industries, applied therapies, and the organizational level of medicine and our healthcare system to support transformations of care for the benefit of the people. In 2012 multi-million research programs were initiated in Germany supported by the EU commission devoted to establish systems medicine since 2010. The field evolves now from basic research to the development of applications. Together with Prof. Tretter the Bertalanffy Center intends to found a Research Group to establish these promising future potentials in Austria, too. The first open meeting marks a unique opportunity for researchers from a variety of disciplines and representatives from industry, and from the private and governmental health care and insurance system to connect with us. If you are interested to join, please, send a message to [email protected]. Please feel free to forward this invitation. Prof. Dr.Dr.Dr. Felix Tretter Prof. Dr.Dr.Dr. Felix Tretter is Professor for Clinical Psychology at the University of Munich and Vice-President of the Bavarian Academy of Addictions.
    [Show full text]
  • University of Copenhagen
    The quest for systems-theoretical medicine in the COVID-19 era Tretter, Felix; Wolkenhauer, Olaf; Meyer-Hermann, Michael; W. Dietrich, Johannes; Green, Sara; Marcum, James; Weckwerth, Wolfram Published in: Frontiers in Medicine Publication date: 2021 Document license: CC BY-ND Citation for published version (APA): Tretter, F., Wolkenhauer, O., Meyer-Hermann, M., W. Dietrich, J., Green, S., Marcum, J., & Weckwerth, W. (2021). The quest for systems-theoretical medicine in the COVID-19 era. Frontiers in Medicine, 8(640974). Download date: 27. sep.. 2021 HYPOTHESIS AND THEORY published: 29 March 2021 doi: 10.3389/fmed.2021.640974 The Quest for System-Theoretical Medicine in the COVID-19 Era Felix Tretter 1*,OlafWolkenhauer2,MichaelMeyer-Hermann3, Johannes W. Dietrich 4,5, Sara Green 6, James Marcum 7 and Wolfram Weckwerth 8,9* 1 Bertalanffy Center for the Study of Systems Science, Vienna,Austria,2 Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany, 3 Department of Systems Immunology and Braunschweig IntegratedCentreof Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, 4 Endocrine Research, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany, 5 Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum, Witten/Herdecke University, Bochum, Germany, 6 Section for History and Philosophy of Science, Department of Science Education, University of Copenhagen, Copenhagen, Denmark, 7 Department of Philosophy, Baylor University, Waco, TX, United States, 8 Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria, 9 Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria Precision medicine and molecular systems medicine (MSM) arehighlyutilizedand successful approaches to improve understanding, diagnosis, and treatment of many diseases from bench-to-bedside.
    [Show full text]
  • Homo Neurobiologicus
    Siegfried Höfling / Felix Tretter (Hrsg.) Homo neurobiologicuS ist der mensch nur sein gehirn? Argumente und Materialien 87 zum Zeitgeschehen www.hss.de Siegfried Höfling / Felix Tretter (Hrsg.) HOMO NEUROBIOLOGICUS Ist der Mensch nur sein Gehirn? Impressum ISBN 978-3-88795-421-5 Herausgeber Copyright 2013, Hanns-Seidel-Stiftung e.V., München Lazarettstraße 33, 80636 München, Tel. 089/1258-0 E-Mail: [email protected], Online: www.hss.de Vorsitzender Prof. Dr. h.c. mult. Hans Zehetmair, Staatsminister a.D., Senator E.h. Hauptgeschäftsführer Dr. Peter Witterauf Leiter der Akademie für Prof. Dr. Reinhard Meier-Walser Politik und Zeitgeschehen Leiter PRÖ / Publikationen Hubertus Klingsbögl Redaktion Prof. Dr. Reinhard Meier-Walser (Chefredakteur, V.i.S.d.P.) Barbara Fürbeth M.A. (Redaktionsleiterin) Susanne Berke, Dipl. Bibl. (Redakteurin) Claudia Magg-Frank, Dipl. sc. pol. (Redakteurin) Marion Steib (Redaktionsassistentin) Druck Hanns-Seidel-Stiftung e.V., Hausdruckerei, München Alle Rechte, insbesondere das Recht der Vervielfältigung, Verbreitung sowie Übersetzung, vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung der Hanns- Seidel-Stiftung e.V. reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Das Copyright für diese Publikation liegt bei der Hanns-Seidel-Stiftung e.V. Namentlich gekennzeichnete redaktionelle Beiträge geben nicht unbedingt die Meinung des Herausgebers wieder. INHALT 05 HOMO
    [Show full text]