Stars a Long Preamble...How Do We Name the Stars?

Total Page:16

File Type:pdf, Size:1020Kb

Stars a Long Preamble...How Do We Name the Stars? We have always divided the sky up into “patterns” or constellations Stars • But remember: The stars that make up Orion are random lights in the sky • They do not represent a mythical figure! They do not represent a mythic figure! Peter Watson Credit & Copyright: Matthew Spinelli A long preamble...how do we name the stars? • Subsequently stars named with Greek letters, in order of brightness • The brightest stars have names that derive from (usually) Arabic: e.g. Ursa Major • α-Orionis = Betelgeuse • β-Orionis = Rigel • (Unfortunately, Rigel is brighter than Betelgeuse, since it is much hotter & radiates mainly in UV! • so system refers to visual • Now we mostly use catalogs: the best known is Messier (pr Messié) Now most objects are referred to by catalogue numbers: • A catalog of objects that e.g. BD + 59° 1915 is 1915th star classified in Bonner aren’t comets Durchmesterung • M1 = Crab nebula New General Catalog has ∼ 10000 galaxies • M3 = Globular cluster so NGC 224 = M31 So what’s the system? • M31 = Andromeda galaxy • M45 = Pleiades cluster • M51 = Spiral galaxy Credit© P. Gitto • M57 = Ring nebula Brightness/Magnitude α Canis Majoris There is NO system α CMa 9 Canis Majoris for naming objects in 9 CMa • Easiest observation about stars is that some HD 48915, are brighter than others. HR 2491 the heavens BD -16°1591 GCTP 1577.00 A/B, • Hipparchus defined brightest to be of first the same object can GJ 244 A/B magnitude, down to the dimmest of sixth LHS 219 magnitude. have several names! ADS 5423 e.g Sirius (Dog Star) is also LTT 2638 • A first mag. star turns out to be 100 x HIP 32349 brighter than a 5th mag. PW Binaries This seems backwards (it is!) • many stars are in multiple star systems: • a twentieth magnitude star is .00000000001 about 40% in pairs times as bright as a first magnitude star (sigh!). Credit & Copyright: Richard Yandrick (Cosmicimage.com) • Need to have negative magnitude stars which are brighter than positive magnitude stars (double sigh!) • Finally we have close dim stars (like Sirius) which are much brighter than distant bright stars (like Rigel) (triple sigh!) • Albireo: orbital period of 75000 years PW PW Stars: some numbers Mass governs how a star works •Mass: will refer to mass of sun as Mo •If M ~ Mo , ⇒ star like the sun •Jupiter ~ Mo /1000 •If M ~ Mo /10 ⇒ red dwarf •Smallest stars (brown dwarfs) ~ Mo /100 •If M ~ Mo /100 ⇒ Smallest stars (brown dwarfs) •Largest “normal” stars ~ 20 Mo •If M ~ 20 Mo ⇒ Supergiant (like Rigel or •Maybe R136a1 ~ 300Mo, but any star this Betelgeuse) size loses material very fast Stars: some numbers • To find distance, can use “parallax” • Position of star will vary over year •Radius: sun is ~ 1000000 km •Time: One million years (1 Myr) is fairly short one second of arc (dime at 10 km)=> distance of one parsec Takes us out to 100 parsecs (400 light years) Stars: some numbers • Note that if we see a 3-D view of Orion, the picture changes totally! •Distance: light year is distance traveled by light in 1 yr •Astronomers usually use the "parsec": 1 pc ~ 4 ly (thirty trillion km). •Closest star (α Centauri) is at a distance of ~1.3 pc. Sirius is at about 5 pc. Pearson publishing And the most important thing we learn is from barbecues • What’s hot and what’s not: roughly • red is 800°C • orange is 1500°C • yellow is 2000°C • blue is 15000°C • X-rays are 1 million °C Doppler shift • Light is part of the whole electromagnetic spectrum • Roughly: shorter wavelength • Can measure how fast something is moving requires higher temps by looking at the light • 1000 ° for red light • 1000000° for X-rays • 1000,000,000° for gamma rays PW • We can see all this around Orion • Blue shift: something moving towards us (and appears hotter) • Sirius; fairly dim star that is very close • Red shift: something moving away from us • Rigel: blue supergiant: would be 1000 times (and appears cooler) brighter than Sirius if it were at the same distance Aldebara Betelgeus Milky M42 Rigel Sirius Betelgeuse: red supergiant: How do stars “work”? • This is the stellar structure 10000 times larger than the sun problem Orbits of Mercury, Venus, Earth and Mars would be • Hadyja HBV (BR) (Don El Chall inside it! Harley FHP) 16 March 2002 In foal to *Magic Dream CAHR - foal date In fact it may be 3 stars! 3/2/2011 • Hadyja embodies the definitive C traits of a Brazil mare - big, bold, grey mare and still enchantingly feminine with a proportional harmonious design and enrapturing charisma. and stellar structure. PW PW But seriously A rather small set of equations governs a star • Note that stars are much simpler than (e.g..) human beings: on PW the other hand we still need a computer to solve for one!PW Stellar evolution once over lightly: Stellar evolution once over lightly: • Stars are born, mature and grow old. • We call this stellar evolution, which is stupid, since we don't talk about the evolution of a 10,000,000,000 baby into an adult. 100,000 1,000,000 10,000,000 • Also note: ALL stars go through ALL the stages. • We don't (usually) see them change because 1,000,000,000 ……… Forever! a human lifetime is so short compared to stellar 100,000 Small stars (like the sun) PW Times are approximate in years. Big stars work much faster: • M42 (Orion's sword) is a vast cloud of gas turning into stars as we watch 1,000,000 100,000 100,000 100,000 Forever 3 hours! Live fast, Die Young! Star Nurseries Star Birth: Stars are born from • Eagle Nebula (M16) vast clouds of gas and dust • Cluster of stars just formed in centre of dark shell of dust and gas dark lanes where stars are about to form group of young stars glowing "lanes" of gas heated star still blowing by large stars away cocoon of gas The Eagle's EGGs: Adulthood Temperature is dull x Rigel Evaporating Gaseous Globules • Don’t we know it! x Betelgeuse (EGGs). • 99.9 % of stars are Very dense parts of the Eagle • • “main-sequence” nebula form new stars which x Sirius blow away the dust and x Sun i.e. stable, hydrogen illuminate the columns • “burning”, very slowly changing. • H-R diagram is temp- brightness plot • only real variable is mass Brightness Richard Powell Mostly cannot see inside stars • Finally star will run low on fuel and expand • Becomes red giant • Sun is only one close enough to see neutrinos • However helio-seismology lets you see inside (like seismology on earth) • Stars vibrate like a (3-D) drumhead Peter Watson Then • Planetary nebula • Central star is a white dwarf (50000°C) • Hot blue gas at centre If stars are • Coolest red gas along the outer boundary. small, (like the sun) they puff away their outer layers This is M57 (Ring Nebula) Peter Watson Peter Watson • This will happen to the sun, in 5.5 billion years. • But we find all sorts of weird shapes. • The star blows away its outer layers, so almost • This is the Cats-eye nebula: looks like successive all the older ones we knew look like this. explosions Peter Watson Peter Watson • Mz3: The Ant Nebula. White dwarfs • After the outer shell has disappeared, we are left with a • Probably magnetic field is creating a star about the same mass as sun but size of earth "focussed" planetary nebula (~10000 km ) • Density: ~1 million: ~ 100,000 times as dense as lead. This shows some in M4 (a dense cluster of stars). Since they are small, they cool very slowly. Peter Watson Peter Watson • The Eight Burst Sirius Nebula Brightest • White dwarf star in the and companion, sky will probably look like Sirius Has an in 100000 years almost invisible companion white dwarf Peter Watson Peter Watson •IC 4406: •a really weird planetary nebula •probably a cylinder that we see side on. Credit: H. Bond (STScI), R. Ciardullo (PSU), WFPC2, HST, NASA Peter Watson.
Recommended publications
  • A Wild Animal by Magda Streicher
    deepsky delights Lupus a wild animal by Magda Streicher [email protected] Image source: Stellarium There is a true story behind this month’s constellation. “Star friends” as I call them, below in what might be ‘ground zero’! regularly visit me on the farm, exploiting “What is that?” Tim enquired in a brave the ideal conditions for deep-sky stud- voice, “It sounds like a leopard catching a ies and of course talking endlessly about buck”. To which I replied: “No, Timmy, astronomy. One winter’s weekend the it is much, much more dangerous!” Great Coopers from Johannesburg came to visit. was our relief when the wrestling match What a weekend it turned out to be. For started disappearing into the distance. The Tim it was literally heaven on earth in the altercation was between two aardwolves, dark night sky with ideal circumstances to wrestling over a bone or a four-legged study meteors. My observatory is perched lady. on top of a building in an area consisting of mainly Mopane veld with a few Baobab The Greeks and Romans saw the constel- trees littered along the otherwise clear ho- lation Lupus as a wild animal but for the rizon. Ascending the steps you are treated Arabians and Timmy it was their Leopard to a breathtaking view of the heavens in all or Panther. This very ancient constellation their glory. known as Lupus the Wolf is just east of Centaurus and south of Scorpius. It has no That Saturday night Tim settled down stars brighter than magnitude 2.6.
    [Show full text]
  • Winter Observing Notes
    Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES in PLANETARY NEBULAE Steward Observatory, University of Arizona, 933 North Cher
    RECOMBINATION LINE VS. FORBIDDEN LINE ABUNDANCES IN PLANETARY NEBULAE MARK ROBERTSON-TESSI Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] AND DONALD R. GARNETT Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; [email protected] ABSTRACT Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy ∆(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex (within the 1σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare ∆(O+2) against a variety of physical properties of the PNs to look for clues 2 as to the mechanism responsible for the abundance discrepancy.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Integral Field Spectroscopy of Planetary Nebulae with MUSE
    galaxies Article Integral Field Spectroscopy of Planetary Nebulae with MUSE Jeremy R. Walsh 1,* and Ana Monreal-Ibero 2,3 1 European Southern Observatory, 85748 Garching, Germany 2 Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain; [email protected] 3 Dpto. Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain * Correspondence: [email protected] Received: 27 February 2020; Accepted: 29 March 2020; Published: 3 April 2020 Abstract: The Multi-Unit Spectroscopic Explorer (MUSE) is a large integral field unit mounted on the ESO Very Large Telescope. Its spatial (60 arcsecond field) and wavelength (4800–9300Å) coverage is well suited to detailed imaging spectroscopy of extended planetary nebulae, such as in the Galaxy. An overview of the capabilities of MUSE applied to Planetary Nebulae (PNe) is provided together with the specific advantages and disadvantages. Some examples of archival MUSE observations of PNe are provided. MUSE datacubes for two targets (NGC 3132 and NGC 7009) are analyzed in detail, and they are used to show the advances achievable for planetary nebula studies. Prospects for further MUSE observations of PNe and a broader analysis of existing datasets are outlined. Keywords: optical spectroscopy; integral field spectroscopy; planetary nebulae; emission lines; physical conditions; abundances; kinematics 1. Overview of MUSE The Multi-Unit Spectroscopic Explorer (MUSE) is a large field-of-view (∼60 × 6000) optical integral field spectrometer mounted on the European Southern Observatory (ESO) Very Large Telescope (VLT), currently on Unit Telescope 4 (Yepun). The field is divided into 24 slices, and each is sent to a separate integral field unit (IFU) that divides the sub-field into 48 mini slits, which are all fed to one of the 24 identical spectrometers [1].
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • 2. Descriptive Astronomy (“Astronomy Without a Telescope”)
    •How do we locate stars in the heavens? •What stars are visible from a given location? 2. Descriptive Astronomy •Where is the sun in the sky at any given time? (Astronomy Without a Telescope) •Where are you on the Earth? http://www.star.ucl.ac.uk/~idh/apod/ In 1930 the International Astronomical Union (IAU) ruled the heavens off into 88 legal, precise constellations. Every star, galaxy, etc., is a member of one of these constellations. Many stars are named according to their constellation and relative brightness (Bayer 1603). Sirius Centauri, -Canis see http://calgary.rasc.ca/constellation.htm#list Majoris, -Orionis An asterism is two stars that appear http://www.google.com/sky/ Betelgeuse To be close in the sky but actually arent http://www.seds.org/messier/ (1758 – 1782) Brief History E.g., ORION Some of the current constellations can be traced back to the inhabitants of the Euphrates valley, from whom they were handed down through the Greeks and Arabs. Few pictorial records of the ancient constellation figures have survived, but in the Almagest AD 150, Ptolemy catalogued the positions of 1,022 of the brightest stars both in terms of celestial latitude and longitude, and of their places in 48 constellations. The Ptolemaic constellations left a blank area centered not on the present south pole but on a point which, because of precession, would have been the south pole c. 2800 BC, a fact that is consistent with the belief that the constellation system had its origin about 5,000 Betelgeuse and Rigel are M42 = Orion nebula M43 = DeMairans nebula years ago.
    [Show full text]