Kinase SH3 NH2 Cdc42
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STUB1 / CHIP Antibody Rabbit Polyclonal Antibody Catalog # ALS16226
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 STUB1 / CHIP Antibody Rabbit Polyclonal Antibody Catalog # ALS16226 Specification STUB1 / CHIP Antibody - Product Information Application WB Primary Accession Q9UNE7 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW 35kDa KDa STUB1 / CHIP Antibody - Additional Information Sample (30 ug of whole cell lysate) A: 293T Gene ID 10273 10% SDS PAGE STUB1 antibody diluted at 1:10000 Other Names E3 ubiquitin-protein ligase CHIP, 6.3.2.-, Antigen NY-CO-7, CLL-associated antigen STUB1 / CHIP Antibody - Background KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing protein 1 E3 ubiquitin-protein ligase which targets {ECO:0000312|HGNC:HGNC:11427}, STUB1 misfolded chaperone substrates towards (<a href="http://www.genenames.org/cgi-bi proteasomal degradation. Collaborates with n/gene_symbol_report?hgnc_id=11427" ATXN3 in the degradation of misfolded target="_blank">HGNC:11427</a>) chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to Target/Specificity STUB1/CHIP substrates and preventing further Human STUB1 chain extension. Ubiquitinates NOS1 in concert with Hsp70 and Hsp40. Modulates the activity Reconstitution & Storage of several chaperone complexes, including Keep as concentrated solution. Aliquot and Hsp70, Hsc70 and Hsp90. Mediates transfer of store at -20°C or below. Avoid multiple non-canonical short ubiquitin chains to HSPA8 freeze-thaw cycles. that have no effect on HSPA8 degradation. Mediates polyubiquitination of DNA polymerase Precautions beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', STUB1 / CHIP Antibody is for research use thereby playing a role in base-excision repair: only and not for use in diagnostic or catalyzes polyubiquitination by amplifying the therapeutic procedures. -
The Functions of CHIP in Age Related Disease
Central JSM Enzymology and Protein Science Bringing Excellence in Open Access Review Article *Corresponding author Kathryn L Ball, The Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The Functions of CHIP in Age University of Edinburgh, Western General Hospital, Crewe Road South, EH4 2XR, UK, Tel: +44 0-131-651-8500; E-mail: Related Disease Submitted: 03 August 2016 Ball KL*, Ning J, Nita E, and Dias C Accepted: 29 September 2016 Institute of Genetics and Molecular Medicine, University of Edinburgh, UK Published: 01 October 2016 Copyright Abstract © 2016 Ball et al. CHIP is a key component of the protein homeostasis or ‘Proteostasis’ network OPEN ACCESS that maintains protein structure and function as a way to ensure the integrity of the proteome in individual cells and the health of the whole organism. Proteostasis Keywords influences the biogenesis, folding, trafficking and degradation of proteins. Originally • CHIP identified as a Hsc70 associated protein and a co-chaperone CHIP has E3-ubiquitin • E3-ligase ligase activity and also displays an intrinsic chaperoning ability. It has become clear • Chaperone that CHIP is a multi-functional protein with roles in cellular processes that go beyond • Structure function its co-chaperone activity. Not surprisingly, by unravelling the functions of CHIP, we are • Neurodegeneration beginning to appreciate that loss of CHIP’s integrity can lead to the development of • Cancer several serious pathological conditions. Here we will describe the key features of CHIPs structure and functions with an emphasis on the non-canonical activities of CHIP before concentrating on the role it plays in protecting against the age associated pathologies of neurodegeneration and cancer. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Ubiquitin Conjugating Enzyme: an Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System
International Journal of Molecular Sciences Review The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System Weigang Liu 1,2, Xun Tang 2,3, Xuehong Qi 2,3, Xue Fu 2,3, Shantwana Ghimire 1,2, Rui Ma 1, Shigui Li 1, Ning Zhang 3 and Huaijun Si 1,2,3,* 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; [email protected] (W.L.); [email protected] (S.G.); [email protected] (R.M.); [email protected] (S.L.) 2 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; [email protected] (X.T.); [email protected] (X.Q.); [email protected] (X.F.) 3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; [email protected] * Correspondence: [email protected]; Tel.: +86-931-7631875 Received: 3 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution process, plants formed defense systems composed of numerous complex gene regulatory networks and signal transduction pathways to regulate and maintain the cell homeostasis. Among them, ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful mechanism for regulating many aspects of the cell physiology because it removes most of the abnormal and short-lived peptides and proteins. -
Characterization of the Cellular Network of Ubiquitin Conjugating and Ligating Enzymes Ewa Katarzyna Blaszczak
Characterization of the cellular network of ubiquitin conjugating and ligating enzymes Ewa Katarzyna Blaszczak To cite this version: Ewa Katarzyna Blaszczak. Characterization of the cellular network of ubiquitin conjugating and ligating enzymes. Cellular Biology. Université Rennes 1, 2015. English. NNT : 2015REN1S116. tel-01547616 HAL Id: tel-01547616 https://tel.archives-ouvertes.fr/tel-01547616 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : BIOLOGIE École doctorale Vie-Agro-Santé présentée par Ewa Katarzyna Blaszczak Préparée à l’unité de recherche UMR 6290, IGDR Institut de Génétique et Développement de Rennes Université Rennes 1 Thèse soutenue à Rennes le 26.06.2015 Characterization of devant le jury composé de : Aude ECHALIER-GLAZER the cellular network Maître de conférence University of Leicester / rapporteur of ubiquitin Lionel PINTARD Directeur de recherche -
Oncoprotein MDM2 Is a Ubiquitin Ligase E3 for Tumor Suppressor P53
View metadata,FEBS 19628 citation and similar papers at core.ac.uk FEBS Letters 420brought (1997) to you 25^27 by CORE provided by Elsevier - Publisher Connector Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 Reiko Honda, Hirofumi Tanaka, Hideyo Yasuda* School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, 1432-1 Horinouchi, Tokyo 192-03, Japan Received 20 October 1997; revised version received 12 November 1997 the ubiquitin activating enzyme, E1, the ubiquitin conjugating Abstract The tumor suppressor p53 is degraded by the ubiquitin-proteasome system. p53 was polyubiquitinated in the enzyme, E2 and the ubiquitin ligase, E3. E1 is a common presence of E1, UbcH5 as E2 and MDM2 oncoprotein. A enzyme involved in all kinds of ubiquitination. The speci¢city ubiquitin molecule bound MDM2 through sulfhydroxy bond of the targeted protein is dependent on the E2 and E3 used in which is characteristic of ubiquitin ligase (E3)-ubiquitin binding. the reaction. The resultant ubiquitinated protein is degraded The cysteine residue in the carboxyl terminus of MDM2 was by proteasome. essential for the activity. These data suggest that the MDM2 protein, which is induced by p53, functions as a ubiquitin ligase, 2. Materials and methods E3, in human papillomavirus-uninfected cells which do not have E6 protein. 2.1. Expression of proteins z 1997 Federation of European Biochemical Societies. Human MDM2 [15], E6-AP [16], UbcH7 [17], E2-C/UbcH10 [18], EFP [19], cdc34 [20] and UbcH5 [21] cDNAs were obtained by RT- Key words: MDM2; p53; Ubiquitin ligase; E6AP; HECT PCR using RNA from HeLa S3 cells. -
Mdm2-Mediated Ubiquitylation: P53 and Beyond
Cell Death and Differentiation (2010) 17, 93–102 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Review Mdm2-mediated ubiquitylation: p53 and beyond J-C Marine*,1 and G Lozano2 The really interesting genes (RING)-finger-containing oncoprotein, Mdm2, is a promising drug target for cancer therapy. A key Mdm2 function is to promote ubiquitylation and proteasomal-dependent degradation of the tumor suppressor protein p53. Recent reports provide novel important insights into Mdm2-mediated regulation of p53 and how the physical and functional interactions between these two proteins are regulated. Moreover, a p53-independent role of Mdm2 has recently been confirmed by genetic data. These advances and their potential implications for the development of new cancer therapeutic strategies form the focus of this review. Cell Death and Differentiation (2010) 17, 93–102; doi:10.1038/cdd.2009.68; published online 5 June 2009 Mdm2 is a key regulator of a variety of fundamental cellular has also emerged from recent genetic studies. These processes and a very promising drug target for cancer advances and their potential implications for the development therapy. It belongs to a large family of (really interesting of new cancer therapeutic strategies form the focus of this gene) RING-finger-containing proteins and, as most of its review. For a more detailed discussion of Mdm2 and its other members, Mdm2 functions mainly, if not exclusively, as various functions an interested reader should also consult an E3 ligase.1 It targets various substrates for mono- and/or references9–12. poly-ubiquitylation thereby regulating their activities; for instance by controlling their localization, and/or levels by The p53–Mdm2 Regulatory Feedback Loop proteasome-dependent degradation. -
Cloning of the Human Homolog of the CDC34 Cell Cycle Gene by Complementation in Yeast SHARON E
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10484-10488, November 1993 Genetics Cloning of the human homolog of the CDC34 cell cycle gene by complementation in yeast SHARON E. PLON*tt, KATHLEEN A. LEPPIG§, HONG-NHUNG Do*, AND MARK GROUDINE*¶ *Fred Hutchinson Cancer Research Center, Seattle, WA 98104; and Departments of tMedicine, §Pathology and fRadiation Oncology, University of Washington, Seattle, WA 98195 Communicated by Leland Hartwell, August 9, 1993 ABSTRACT In a screen designed to isolate human cDNAs During initial screening for human cDNAs that would that complement a yeast G2 phase checkpoint mutation (mecl), complement the mecl checkpoint mutation, we obtained a we isolated a cDNA homologous to the Saccharomyces cerevi- partially active cDNA that further analysis reveals is the siae CDC34 gene. The human CDC34 cDNA can functionally human homolog of S. cerevisiae CDC34. We report here the substitute for the yeast CDC34 gene and represents a mam- cloning and functional and physical characterization of this malian homolog ofthe group ofyeast genes required for the late human gene. 11 G- S phase transition. The human CDC34 gene is expressed in multiple cell lines as a unique species and Southern blot MATERIALS AND METHODS analysis reveals evidence for a single gene that is highly conserved in higher eukaryotes. The human gene is located on Yeast and Bacterial Strains. The S. cerevisiae strains de- the far telomeric region of 19p13.3 in a location that defmes a scribed in these experiments were isogenic with A364a. region of homology between human chromosome 19p and Source of the strain other than this laboratory are indicated: mouse chromosome 11. -
Protein Engineering of a Ubiquitin-Variant Inhibitor of APC/C Identifies a Cryptic K48 Ubiquitin Chain Binding Site
Protein engineering of a ubiquitin-variant inhibitor of APC/C identifies a cryptic K48 ubiquitin chain binding site Edmond R. Watsona,b, Christy R. R. Gracea, Wei Zhangc,d,2, Darcie J. Millera, Iain F. Davidsone, J. Rajan Prabub, Shanshan Yua, Derek L. Bolhuisf, Elizaveta T. Kulkof, Ronnald Vollrathb, David Haselbache,g, Holger Starkg, Jan-Michael Peterse,h, Nicholas G. Browna,f, Sachdev S. Sidhuc,1, and Brenda A. Schulmana,b,1 aDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105; bDepartment of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; cDonnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada M5S3E1; dDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S3E1; eResearch Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria; fDepartment of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599; gMax Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and hMedical University of Vienna, 1090 Vienna, Austria Contributed by Brenda A. Schulman, June 24, 2019 (sent for review February 19, 2019; reviewed by Kylie Walters and Hao Wu) Ubiquitin (Ub)-mediated proteolysis is a fundamental mechanism the type of catalytic domain. E3s harboring “HECT” and “RBR” used by eukaryotic cells to maintain homeostasis and protein catalytic domains promote ubiquitylation through 2-step reac- quality, and to control timing in biological processes. Two essential tions involving formation of a thioester-linked intermediate be- aspects of Ub regulation are conjugation through E1-E2-E3 enzy- tween the E3 and Ub’s C terminus: First, Ub is transferred from matic cascades and recognition by Ub-binding domains. -
Engineering a Synthetic P53-Mdm2 Network in Budding Yeast
Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics Of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Engineering a synthetic p53-Mdm2 network in budding yeast presented by Diplom: Barbara Di Ventura Born in: Latina, Italia 2006 Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics Of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Diplom: Barbara Di Ventura Born in: Latina, Italia Engineering a synthetic p53-Mdm2 network in budding yeast Referees: Prof. Dr. Michael Knop Prof. Dr. Karsten Rippe A mamma, papa’ e Chicca "Experience is the name everyone gives to their mistake" Oscar Wilde Acknowledgments If I am here, writing the acknowledgements section in my phd thesis, I owe it first of all to my boss, Luis. I am grateful that he wasn’t discouraged with the idea of getting an engineer to work in his lab. On the opposite, he often told me that it was an advantage to be naïve and ask the simplest questions. He offered me the opportunity to do my own experiments, to make many mistakes, to develop my own way to do research. Most of all, he has always comforted me in moments of discouragement, assuring me that lack of results or experiments gone wrong are an inevitable feature of research. Luis, your positive attitude, your extreme generosity, your humanity, make of you an example to follow and give me hope that one can be a scientist and lead a happy life at the same time! Among the many people who have helped me with the basics of molecular biology and that have patiently listened to me talking about the many doubts or troubles related to my project, I first would like to thank Massimiliano. -
STUB1 Mutations in Autosomal Recessive Ataxias
Heimdal et al. Orphanet Journal of Rare Diseases 2014, 9:146 http://www.ojrd.com/content/9/1/146 RESEARCH Open Access STUB1 mutations in autosomal recessive ataxias – evidence for mutation-specific clinical heterogeneity Ketil Heimdal1*, Monica Sanchez-Guixé2,3, Ingvild Aukrust2, Jens Bollerslev4,5, Ove Bruland2, Greg Eigner Jablonski6, Anne Kjersti Erichsen7, Einar Gude8, Jeanette A Koht9, Sigrid Erdal2, Torunn Fiskerstrand2,3, Bjørn Ivar Haukanes2, Helge Boman2, Lise Bjørkhaug10, Chantal ME Tallaksen11,12, Per M Knappskog2,13† and Stefan Johansson2,13† Abstract Background: A subset of hereditary cerebellar ataxias is inherited as autosomal recessive traits (ARCAs). Classification of recessive ataxias due to phenotypic differences in the cerebellum and cerebellar structures is constantly evolving due to new identified disease genes. Recently, reports have linked mutations in genes involved in ubiquitination (RNF216, OTUD4, STUB1) to ARCA with hypogonadism. Methods and results: With a combination of homozygozity mapping and exome sequencing, we identified three mutations in STUB1 in two families with ARCA and cognitive impairment; a homozygous missense variant (c.194A > G, p.Asn65Ser) that segregated in three affected siblings, and a missense change (c.82G > A, p.Glu28Lys) which was inherited in trans with a nonsense mutation (c.430A > T, p.Lys144Ter) in another patient. STUB1 encodes CHIP (C-terminus of Heat shock protein 70 – Interacting Protein), a dual function protein with a role in ubiquitination as a co-chaperone with heat shock proteins, and as an E3 ligase. We show that the p.Asn65Ser substitution impairs CHIP’s ability to ubiquitinate HSC70 in vitro, despite being able to self-ubiquitinate. -
Aggresomal Sequestration and STUB1-Mediated Ubiquitylation During Mammalian Proteaphagy of Inhibited Proteasomes
Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes Won Hoon Choia,b, Yejin Yuna,b, Seoyoung Parka,c, Jun Hyoung Jeona,b, Jeeyoung Leea,b, Jung Hoon Leea,c, Su-A Yangd, Nak-Kyoon Kime, Chan Hoon Jungb, Yong Tae Kwonb, Dohyun Hanf, Sang Min Lime, and Min Jae Leea,b,c,1 aDepartment of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 03080 Seoul, Korea; bDepartment of Biomedical Sciences, Seoul National University Graduate School, 03080 Seoul, Korea; cNeuroscience Research Institute, Seoul National University College of Medicine, 03080 Seoul, Korea; dScience Division, Tomocube, 34109 Daejeon, Korea; eConvergence Research Center for Diagnosis, Korea Institute of Science and Technology, 02792 Seoul, Korea; and fProteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 03080 Seoul, Korea Edited by Richard D. Vierstra, Washington University in St. Louis, St. Louis, MO, and approved July 1, 2020 (received for review November 18, 2019) The 26S proteasome, a self-compartmentalized protease complex, additional LC3-interacting region; the target cargoes can be plays a crucial role in protein quality control. Multiple levels of docked onto phosphatidylethanolamine-modified LC3 (LC3-II) regulatory systems modulate proteasomal activity for substrate on the expanding phagophore membrane, enveloped by an hydrolysis. However, the destruction mechanism of mammalian autophagosome, and eventually degraded in the autolysosomes. proteasomes is poorly understood. We found that inhibited pro- Notably, the enzymatic cascade attaching the lipid moiety at the teasomes are sequestered into the insoluble aggresome via C-terminal glycine of the cleaved LC3 protein in autophagy re- HDAC6- and dynein-mediated transport.