Science Results from the VISTA Survey of the Orion Star-Forming Region

Total Page:16

File Type:pdf, Size:1020Kb

Science Results from the VISTA Survey of the Orion Star-Forming Region Astronomical Science Science Results from the VISTA Survey of the Orion Star-forming Region Monika Petr-Gotzens1 on the evolution of circumstellar discs. in the Orion molecular cloud (OMC) B and Juan Manuel Alcalá2 The data from the VISTA Orion Survey, which has an age of one million years or Cesar Briceño3 including catalogues, are available less. Nearly one degree southwest of ζ Eduardo González-Solares4 to the community. In this article we pre- Ori there is the well­known intermediate­ Loredana Spezzi5 sent an overview of selected science age cluster σ Ori (age ~ 3 Myr), while Paula Teixeira1 results that have emerged so far from members of the slightly older Ori OB 1b Maria Rosa Zapatero Osorio6 this survey. association (~ 5 Myr) populate a wide Fernando Comerón1 area around the Belt stars over a few Jim Emerson7 degrees on the sky and are found ‘’off’’ Simon Hodgkin4 In order to fully understand the star for­ the main molecular clouds (Briceño, Gaitee Hussain1 mation history of a star­forming region, it 2008). Only recently, yet another group of Mark McCaughrean5 is of the highest importance to obtain kinematically distinct young stars has Jorge Melnick1 a complete census of its entire stellar and been identified northwest of δ Ori, which Joanna Oliveira8 substellar populations since the earliest is the group of ~ 10-Myr-old stars around Suzanne Ramsay1 epoch of star formation. For the large the B­type star 25 Ori (Briceño et al., Thomas Stanke1 majority of stars in our Galaxy the com­ 2007). Elaine Winston9 plex process of star formation takes Hans Zinnecker10 place in giant molecular clouds (GMCs), Using VISTA, the world’s largest near­ from which typically several generations infrared survey facility (Emerson et al., of stars are formed sequentially. Compar­ 2006), which provides a field of view of 1 ESO ative observational studies across these ~ 1 by 1.5 degrees, we have carried out 2 INAF–Osservatorio di Capodimonte, populations of differing age are funda­ a deep multiwavelength survey of a large Napoli, Italy mental to elucidate issues such as the region around the Orion Belt stars. This 3 Centro de Investigaciones de timescales for circumstellar (protoplane­ survey has delivered a new census of Astronomía (CIDA), Mérida, Venezuela tary) disc evolution, environmental ef­ very low­mass stars and brown dwarfs 4 Institute of Astronomy, Cambridge, fects leading to possible non­universality and detected new brown dwarf candi­ United Kingdom of the low­mass end of the initial (sub­) dates down to ~ 3–4 Jupiter masses at 5 European Space Agency (ESTEC), stellar mass function (IMF) and the time­ an age of 3 Myr. The advantageous loca­ Noordwijk, the Netherlands scales for the dispersal of stellar ensem­ tion of Orion below the Galactic Plane 6 Centro de Astrobiología, Instituto bles. Wide-field imaging surveys in the and almost in the direction of the Galactic Nacional de Técnica Aerospacial infrared are the best means to accom­ anti­centre implies that the contamina­ (CSIC-INTA), Madrid, Spain plish such large­scale studies systemati­ tion by foreground and background stars 7 Astronomy Unit, Queen Mary, Univer­ cally and consistently homogeneously. is low. sity of London, United Kingdom 8 Astrophysics Group, Keele University, The Orion star­forming region is an ideal United Kingdom target for studying almost all aspects Survey strategy, observations and data 9 School of Physics, University of Exeter, related to the physics of star formation, reduction United Kingdom early stellar evolution or the interplay 10 SOFIA Science Center, NASA­Ames, between OB associations and the ISM The survey consists of Z, Y, J, H, Ks Moffett Field, USA (c.f., Bally, 2008). It is the closest GMC, images obtained during 14 nights between at an average distance of 400 parsecs 16 October and 2 November 2009. The (pc), and has been actively forming stars survey area is a mosaic of 20 VISTA fields As part of the VISTA Science Verifica- within at least the last ~ 10 Myr, which is covering a total of 30 square degrees tion programme, a large set of images also the approximate timescale on which around the Orion Belt stars; the surveyed in Orion was obtained at five near- giant planets are thought to be formed. area is shown in Figure 1a. Whenever infrared wavelength bands, from 0.9 to A particularly interesting region for the possible the observations in all filters 2.2 μm. The resulting multi-band cata- purpose of a wide-field survey, investigat­ were carried out sequentially for one field, logue contains approximately three ing stellar and substellar properties in before observing the next field. The one million sources, allowing investigation different evolutionary stages and environ­ VISTA field that included the young stellar of various issues concerning star ments, is the region around the Orion group 25 Ori was imaged up to 23 times and brown dwarf formation, such as Belt stars. at J­ and H­bands with the aim of de ­ a) the difference in the shape of the tecting the photometric variability among substellar mass function in a cluster vs. The Belt is a prominent part of the con­ the very low­mass stars and brown non-clustered environment, b) the influ- stellation of Orion and is marked by three dwarf members of the 25 Ori group. More ence of massive OB stars on the pro- luminous OB stars, namely ζ Ori (Alnitak), details on the observing strategy, the cess of brown dwarf formation, c) the ε Ori (Alnilam) and δ Ori (Mintaka), from exposure times per filter and particular size and morphology of dust envelopes east to west. To the east of ζ Ori there are observing patterns were described in around protostars, and d) the com- very young populous stellar clusters, like Arnaboldi et al. (2010). Figure 1b shows parative role of mass and environment NGC 2024, which is still partly embedded as an example of the data, a colour- The Messenger 145 – September 2011 29 Astronomical Science Petr-Gotzens M. et al., Science Results from the VISTA Survey R. Bernal Andreo Bernal R. Figure 1a. The boundary of the VISTA Orion Survey is indicated in white, overplotted on an optical image. The size of the image is 10.5 by 8.4 degrees and the orientation is north up, east left. tion of magnitude. In this way we find that Figure 1b. VISTA colour image of the young stellar composite image of the young cluster the survey should have detected, for a cluster NGC 2071 located in the Orion molecular cloud B (in the northeast of the surveyed area in NGC 2071. population as young as 1 Myr, essen- Figure 1a). The size of the image is ~ 16 × 16 arc­ tially all objects down to around six Jupiter minutes and shows a three colour composite (Z – blue, The amount of data collected for the masses in a region showing less than J – green, Ks – red). Orientation as Figure 1a. VISTA Orion Survey was 559 Gigabytes, 1 mag of visual interstellar extinction. not including calibration data, clearly making data handling and reduction a sequence that clearly separates from the challenge. The data reduction was per­ Selected science results older main sequence objects of the sur­ formed by a dedicated pipeline, devel­ rounding general field. In the same figure oped within the VISTA Data Flow System Young very low-mass stars and brown the position of the spectroscopically-­ (VDFS), and run by the Cambridge As ­ dwarfs close to ε Ori confirmed T Tauri stars, the higher mass tronomy Survey Unit (CASU). The pipeline The photometric identification of the low­ counterparts to the brown dwarfs, are delivers science­ready stacked images est mass objects has greatly benefitted plotted (green diamonds in Figure 2), and mosaics, as well as photometrically from the broad wavelength coverage of showing convincingly that the candidate and astrometrically calibrated source the survey. With inclusion of the Z and Y brown dwarf sequence is an extension catalogues. A total of 3.2 million sources filters, the lowest-mass objects stand out of the higher mass pre­main sequence was detected in the VISTA Orion Survey. in colour–magnitude diagrams involving stars. Note that the gap in between those bands, appearing in a region inac­ T Tauri stars and brown dwarfs is artificial The photometric calibration was deduced cessible to other objects regardless of and due to the selection criteria on one from 2MASS photometry. The photo- their reddening. This feature is caused by side and the spectroscopic sensitivity metric errors are usually below 5% and the appearance of small dust particles limit on the other side. A similar sequence the overall 5σ limiting magnitudes of the in the atmospheres of objects cooler than of pre­main sequence objects in the ε Ori survey are Z ~ 22.5 mag, Y ~ 21.2 mag, 2500 K, which causes a steep redden­ cluster has previously been reported by J ~ 20.4 mag, H ~ 19.4 mag, Ks ~ 18.6 ing of the colours involving wavelengths some authors from an analysis of optical mag; different parts of the survey can shorter than the J­band with decreas­ colour–magnitude diagrams (Caballero have slightly better or poorer limits due to ing tem perature, while the spectral & Solano, 2008; Scholz & Eislöffel, 2005). varying observing conditions. Additional energy distribution at longer wavelengths data taken at Z­ and J-bands for the field remains nearly unchanged. Employing the full wavelength range of centred on the cluster σ Ori significantly the survey, it can be further tested improved the sensitivity, and achieved 5σ The photometric analysis of a ~ 1 square whether the spectral energy distribution limits of Z ~ 22.9 mag and J ~ 21.4 mag.
Recommended publications
  • New Constraints on the Membership of the T Dwarf S Ori 70 in the Σ Orionis Cluster
    A&A 477, 895–900 (2008) Astronomy DOI: 10.1051/0004-6361:20078600 & c ESO 2008 Astrophysics New constraints on the membership of the T dwarf S Ori 70 in the σ Orionis cluster M. R. Zapatero Osorio1,V.J.S.Béjar1,G.Bihain1,2, E. L. Martín1,3,R.Rebolo1,2, I. Villó-Pérez4, A. Díaz-Sánchez5, A. Pérez Garrido5, J. A. Caballero6, T. Henning6, R. Mundt6, D. Barrado y Navascués7, and C. A. L. Bailer-Jones6 1 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Consejo Superior de Investigaciones Científicas, Spain 3 University of Central Florida, Department of Physics, PO Box 162385, Orlando, FL 32816, USA 4 Departamento de Electrónica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 5 Departamento de Física Aplicada, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 6 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 7 LAEFF-INTA, PO 50727, 28080 Madrid, Spain Received 2 September 2007 / Accepted 10 October 2007 ABSTRACT Aims. The nature of S Ori 70 (S Ori J053810.1−023626), a faint mid-T type object found towards the direction of the young σ Orionis cluster, is still under debate. We intend to find out whether it is a field brown dwarf or a 3-Myr old planetary-mass member of the cluster. Methods. We report on near-infrared JHKs and mid-infrared [3.6] and [4.5] IRAC/Spitzer photometry recently obtained for S Ori 70. The new near-infrared images (taken 3.82 yr after the discovery data) allowed us to derive the first proper motion measurement for this object.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • New Deep XMM-Newton Observations to the West of the Sigma Orionis Cluster
    Astronomy & Astrophysics manuscript no. aa10475v1 c ESO 2018 December 3, 2018 New deep XMM-Newton observations to the west of the σ Orionis cluster J. L´opez-Santiago and J. A. Caballero Departamento de Astrof´ısica y Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain Received 27 June 2008 / Accepted 02 September 2008 ABSTRACT Aims. The objective of this study is to determine the general X-ray properties of the young stars in the external regions of the σ Orionis cluster (τ ∼ 3 Ma, d ∼ 385 pc) and yield constraints on the X-ray emission of brown dwarfs. Methods. We carried out a careful analysis of public data taken in an unexplored region to the west of the centre of the cluster with the three EPIC cameras onboard the XMM-Newton mission. We looked for new X-ray young stars among the 41 identified X-ray sources in the area with maximum likelihood parameters L > 15 by cross-correlation with the USNO-B1, DENIS, and 2MASS databases. Results. Based on colour-colour, colour-magnitude, and hardness ratio diagrams, and previous spectroscopic, astrometric, and infrared-flux excess information, we classified the optical/near-infrared counterparts of the X-ray sources into: young stars (15), field stars (4), galaxies (19), and sources of unknown nature (3). Most of the X-ray detections, including those of nine young stars, are new. We derived the X-ray properties (e.g. temperatures, metallicities, column densities) of the twelve young stars with the largest signal-to-noise ratios.
    [Show full text]
  • The PDS 110 Observing Campaign -- Photometric And
    The PDS 110 observing campaign 1 Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stz283/5304181 by St Andrews University Library user on 21 February 2019 The PDS 110 observing campaign { photometric and spectroscopic observations reveal eclipses are aperiodic? H.P. Osborny 1, M. Kenworthy2, J.E. Rodriguez3, E.J.W. de Mooij4, G.M. Kennedy5;6, H. Relles7, E. Gomez,7, M. Hippke8, M. Banfiz, L. Barbieriz, I.S. Becker9, P. Benniz;10, P. Berlind3, A. Bieryla3, G. Bonnoli11, H. Boussierz, S.M. Brincatz, J. Briolz, M.R. Burleigh12, T. Butterley13, M.L. Calkins3, P. Chote5, S. Ciceri14, M. Deldemz, V.S. Dhillon15;16, E. Dosez, F. Duboisz;17, S. Dvorakz, G.A. Esquerdo3, D.F. Evans18, S. Ferratfiatz, S.J. Fossey19;20, M.N. Gunther¨ 21, J. Hallz, F.-J. Hambschz;22, E. Herrero23, K. Hillsz, R. Jamesz, R. Jayawardhana24, S. Kafka25, T.L. Killesteinz;4, C. Kotnikz, D.W. Latham3, D. Lemayz, P. Lewinz, S. Littlefair15, C. Loprestiz, M. Mallonn26, L. Mancini27;28;29, A. Marchiniz;11, J.J. McCormac5;6, G. Murawskiz;30, G. Myersz 25, R. Papiniz, V. Popovz;31, U. Quadriz, S.N. Quinn3, L. Raynard12, L. Rizzutiz, J. Robertson32, F. Salvaggioz, A. Scholz33, R. Sfair9, A. M. S. Smith34, J. Southworth18, T.G. Tanz;35 S. Vanaverbekez;17, E.O. Waagen23, C.A. Watson36, R.G. West5;6, O.C. Winter9, P.J. Wheatley5;6, R.W. Wilson13, G. Zhou3 Affiliations are listed at the end of the paper. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT PDS 110 is a young disk-hosting star in the Orion OB1A association.
    [Show full text]
  • Ricky Leon Murphy Project
    Ricky Leon Murphy The Appendices: Project – HET606 Appendix 1 – Known Exoplanets Semester 2 – 2004 Appendix 2 – Location of Tau Bootis Appendix 3 – Location of HD 209458 Appendix 4 – Image Reduction Search for Other Worlds Introduction As of September 2004, there are 136 known planets outside our solar system (http://exoplanets.org). These extra-solar planets, or exoplanets, are one of the most current and highly studied subjects in Astronomy today and it is one of the very few subjects that involve both amateur and professional astronomers. The huge telescopes perched atop Mauna Kea in Hawaii are pointed at these objects, as are 8” telescopes purchased from the local shopping mall – and many others around the world. Why are we finding these planets now if only 8” telescopes can detect them? Simple; we know what we are looking for and we have better tools to get the job done. While telescope size does not seem to matter with the search and study of exoplanets, it’s what you do not hear about that really matters: improved sensitivity in CCD cameras, improved resolution in spectroscopy, and fast computers to perform the mathematics. The goal of gathering repeatable data is very important when studying exoplanets. The rewards of such study carry implications across the board in Astronomy: we can learn about our own solar system and test the theories of solar system formation and evolution, improve the sensitivity to detect small Earth-like planets, and possibly provide targets for the spaced based telescopes and SETI projects; however, the most important implication is that perhaps for the first time in history, amateurs and professionals from around the world are engaged in this subject and working together to share the data.
    [Show full text]
  • The Astrology of Space
    The Astrology of Space 1 The Astrology of Space The Astrology Of Space By Michael Erlewine 2 The Astrology of Space An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 © 2006 Michael Erlewine/StarTypes.com ISBN 978-0-9794970-8-7 All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Graphics designed by Michael Erlewine Some graphic elements © 2007JupiterImages Corp. Some Photos Courtesy of NASA/JPL-Caltech 3 The Astrology of Space This book is dedicated to Charles A. Jayne And also to: Dr. Theodor Landscheidt John D. Kraus 4 The Astrology of Space Table of Contents Table of Contents ..................................................... 5 Chapter 1: Introduction .......................................... 15 Astrophysics for Astrologers .................................. 17 Astrophysics for Astrologers .................................. 22 Interpreting Deep Space Points ............................. 25 Part II: The Radio Sky ............................................ 34 The Earth's Aura .................................................... 38 The Kinds of Celestial Light ................................... 39 The Types of Light ................................................. 41 Radio Frequencies ................................................. 43 Higher Frequencies ...............................................
    [Show full text]
  • The Term Brown Dwarf (BD) Refers to Objects with Masses Below the Limit for Stable Hydrogen Fusion in Stellar Interiors
    S Ori 70: still a strong cluster planet candidate E.L. Martin (1) (1) Instituto de Astrojis ica de Canarias Avda. Via Lactea, E-38200 La Laguna, Sp ain In this paper I show that the coolest aOrionis cluster planet S Ori 70 is still a strong candidate member despite recent claims by Burgasser et al. that it could be a brown dwarf interloper. The main point of my argument is that the colors of S Ori 70 are significantly different to those of field dwarfs. This object has in fact the reddest H color of all known T dwarfs, - K a clear indication of low gravity according to all published models. In a J - H versus - diagram, S Ori 70 lies in the region where models of ultracool dwarfs predict that low gravityH K objects should be located. I conclude that S Ori 70 is still a strong candidate member of the aOrionis open cluster. I briefly discuss additional observational tests that can be carried out with existing facilities to verify the aOrionis membership of this cluster planet candidate. Keywords: stars: very low mass stars and brown dwarfs. 1 Introduction The term brown dwarf (BD) refers to objects with masses below the limit for stable hydrogen fusion in stellar interiors. For solar composition, this limit was calculated to be 0.08 M0 by Kumar (1963) and Hayashi & Nakano (1963). Modern calculations have changed the value of this boundary only slightly. For example, Baraffe et al. (1998) give 0.072 M0 for solar metallicity. There is no consensus in the community about the minimum mass of brown dwarfs (Boss et al.
    [Show full text]
  • Comprehensive Analyses of Massive Binaries and Implications on Stellar Evolution
    Institut für Physik und Astronomie Astrophysik I Comprehensive analyses of massive binaries and implications on stellar evolution Kumulative Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin Astrophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Tomer Shenar Potsdam, den 02. September 2016 Published online at the Institutional Repository of the University of Potsdam: URN urn:nbn:de:kobv:517-opus4-104857 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104857 Abstract (English / Deutsch) Via their powerful radiation, stellar winds, and supernova explosions, massive stars (Mini & 8 M ) bear a tremendous impact on galactic evolution. It became clear in recent decades that the majority of massive stars reside in binary systems. This thesis sets as a goal to quantify the impact of binarity (i.e., the presence of a companion star) on massive stars. For this purpose, massive binary systems in the Local Group, including OB-type binaries, high mass X-ray binaries (HMXBs), and Wolf-Rayet (WR) binaries, were investigated by means of spectral, orbital, and evolutionary analyses. The spectral analyses were performed with the non-local thermodynamic equillibrium (non-LTE) Pots- dam Wolf-Rayet (PoWR) model atmosphere code. Thanks to critical updates in the calculation of the hydrostatic layers, the code became a state-of-the-art tool applicable for all types of hot massive stars (Chapter 2). The eclipsing OB-type triple system δ Ori served as an intriguing test-case for the new version of the PoWR code, and provided key insights regarding the formation of X-rays in massive stars (Chapter 3).
    [Show full text]
  • Status of Known T Type Sources Towards the Σ Orionis Cluster
    Status of known T type sources towards the σ Orionis cluster K. Pe˜naRam´ırez1, M.R. Zapatero Osorio2, V.J.S. B´ejar3,4 1 Instituto de Astrof´ısica. Pontificia Universidad Cat´olica de Chile (IA-PUC), E-7820436 Santiago, Chile. 2 Centro de Astrobiolog´ıa(CSIC-INTA), E-28850 Torrej´onde Ardoz, Madrid, Spain. 3 Instituto de Astrof´ısica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain. 4 Universidad de La Laguna, Tenerife, Spain. Abstract. We present the characterization of the three T type candidates (S Ori 70, S Ori 73, and S Ori J053804.65−021352.5) lying in the line of sight towards σ Orionis (∼3Myr, ∼352pc, solar metallicity) by means of near-infrared photometric, astrometric, and spectroscopic studies. H-band methane images were collected for all three sources using the LIRIS instrument on the 4.2m William Herschel Telescope. J-band spectra of resolution ∼500 were obtained for S Ori J053804.65−021352.5 with the ISAAC spec- trograph on the 8m Very Large Telescope (VLT), and public low resolution (R∼50) JH spectra obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST) were employed for the spectroscopic classification of S Ori 70 and 73. Accurate proper motions with a typical uncertainty of ±3 masyr−1 were de- rived using ancient images and new data collected with ISAAC/VLT and WFC3/HST. The three objects were spectroscopically classified as T4.5 ± 0.5 (S Ori 73), T5 ± 0.5 − +0.5 (S Ori J053804.65 021352.5), and T7−1.0 (S Ori 70).
    [Show full text]
  • January 2020 BRAS Newsletter
    A Monthly Meeting January 13th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Presentation: “A year in review and a planning and strategy session”. What's In This Issue? President’s Message Secretary's Summary Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner - Coy and Lindsey’s Wedding Messages from the HRPO Friday Night Lecture Series Science Academy Solar Viewing Stem Expansion Plus Night Adult Astronomy Courses: Learn Your Sky, Learn Your Telescope, Learn Your Binoculars Observing Notes: Orion – The Hunter & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 26 January 2020 President’s Message From our incoming President, Scott Cadwallader: Greetings one and all and welcome to the start of the New Year! We have some exciting things planned for the coming year, and, hopefully, this newsletter will get us going on the right foot. Inside, you’ll find several opportunities to reach out to the community and share the wonders of the night sky, even from our heavily light- polluted neck of the woods. In recent years, most of our activities have seemed to coalesce around our outreach events, so that, plus club meetings, have been our goto in terms of getting to know our fellow club members and our group learning activities. Particularly useful in this respect is what we do to assist BREC in running our observatory—Chris Kersey has details here and can help get you credentialled for that.
    [Show full text]
  • Background Abstract Observations Discussion
    Abstract We present HST/WFC3 spectra of the T dwarfs S Ori 70 and S Ori 73 located towards the Sigma Orionis cluster, and the peculiar object PLZJ 100 in the Pleiades. Both S Ori 70 and S Ori 73 are confirmed as T dwarfs, with spectral types similar to estimates previously reported in the literature. However, the spectra appear to be typical for T dwarfs, which reinforces the view derived from published proper motions that these are foreground objects, as opposed to cluster members (or ejected objects) with very low surface gravities and masses. The Pleiades object PLZJ 100 is marginally spatially resolved (~0.2 arcsec) indicating that it is an external galaxy. The extended nature of the source is probably responsible for the Pleiades-like proper motion that was previously reported at low signal to noise. This is a relatively new form of contamination that is likely to become more common as imaging surveys probe ever deeper for faint brown dwarfs and planets. Background If bona fide T dwarfs can be identified in young clusters, they will be valuable benchmark systems with low surface gravities and planetary masses. Such systems would aid the development of Flux model atmospheres for T dwarfs and exoplanets. A few rather faint T dwarf candidates have previously been reported in young clusters, e.g. S Ori 70 and S Ori 73 in the σ Orionis cluster (Zapatero Osorio et al.2002;2008 (Z02,Z08); Bihain et al. 2009 (B09)) and PLZJ93 and PLZJ100 in the Pleiades (Casewell et al.2007). Wavelength (Angstroms) S Ori 70 was known to be a T4.5-T7 dwarf from low quality ground-based spectroscopy HST/WFC3 spectrum of S Ori 70 taken with the G141 grism.
    [Show full text]
  • O Personenregister
    O Personenregister A alle Zeichnungen von Sylvia Gerlach Abbe, Ernst (1840 – 1904) 100, 109 Ahnert, Paul Oswald (1897 – 1989) 624, 808 Airy, George Biddell (1801 – 1892) 1587 Aitken, Robert Grant (1864 – 1951) 1245, 1578 Alfvén, Hannes Olof Gösta (1908 – 1995) 716 Allen, James Alfred Van (1914 – 2006) 69, 714 Altenhoff, Wilhelm J. 421 Anderson, G. 1578 Antoniadi, Eugène Michel (1870 – 1944) 62 Antoniadis, John 1118 Aravamudan, S. 1578 Arend, Sylvain Julien Victor (1902 – 1992) 887 Argelander, Friedrich Wilhelm August (1799 – 1875) 1534, 1575 Aristarch von Samos (um −310 bis −230) 627, 951, 1536 Aristoteles (−383 bis −321) 1536 Augustus, Kaiser (−62 bis 14) 667 Abbildung O.1 Austin, Rodney R. D. 907 Friedrich W. Argelander B Baade, Wilhelm Heinrich Walter (1893 – 1960) 632, 994, 1001, 1535 Babcock, Horace Welcome (1912 – 2003) 395 Bahtinov, Pavel 186 Baier, G. 408 Baillaud, René (1885 – 1977) 1578 Ballauer, Jay R. (*1968) 1613 Ball, Sir Robert Stawell (1840 – 1913) 1578 Balmer, Johann Jokob (1825 – 1898) 701 Abbildung O.2 Bappu, Manali Kallat Vainu (1927 – 1982) 635 Aristoteles Barlow, Peter (1776 – 1862) 112, 114, 1538 Bartels, Julius (1899 – 1964) 715 Bath, Karl­Ludwig 104 Bayer, Johann (1572 – 1625) 1575 Becker, Wilhelm (1907 – 1996) 606 Bekenstein, Jacob David (*1947) 679, 1421 Belopolski, Aristarch Apollonowitsch (1854 – 1934) 1534 Benzenberg, Johann Friedrich (1777 – 1846) 910, 1536 Bergh, Sidney van den (*1929) 1166, 1576, 1578 Bertone, Gianfranco 1423 Bessel, Friedrich Wilhelm (1784 – 1846) 628, 630, 1534 Bethe, Hans Albrecht (1906 – 2005) 994, 1010, 1535 Binnewies, Stefan (*1960) 1613 Blandford, Roger David (*1949) 723, 727 Blazhko, Sergei Nikolajewitsch (1870 – 1956) 1293 Blome, Hans­Joachim 1523 Bobrovnikoff, Nicholas T.
    [Show full text]