Ricky Leon Murphy Project

Total Page:16

File Type:pdf, Size:1020Kb

Ricky Leon Murphy Project Ricky Leon Murphy The Appendices: Project – HET606 Appendix 1 – Known Exoplanets Semester 2 – 2004 Appendix 2 – Location of Tau Bootis Appendix 3 – Location of HD 209458 Appendix 4 – Image Reduction Search for Other Worlds Introduction As of September 2004, there are 136 known planets outside our solar system (http://exoplanets.org). These extra-solar planets, or exoplanets, are one of the most current and highly studied subjects in Astronomy today and it is one of the very few subjects that involve both amateur and professional astronomers. The huge telescopes perched atop Mauna Kea in Hawaii are pointed at these objects, as are 8” telescopes purchased from the local shopping mall – and many others around the world. Why are we finding these planets now if only 8” telescopes can detect them? Simple; we know what we are looking for and we have better tools to get the job done. While telescope size does not seem to matter with the search and study of exoplanets, it’s what you do not hear about that really matters: improved sensitivity in CCD cameras, improved resolution in spectroscopy, and fast computers to perform the mathematics. The goal of gathering repeatable data is very important when studying exoplanets. The rewards of such study carry implications across the board in Astronomy: we can learn about our own solar system and test the theories of solar system formation and evolution, improve the sensitivity to detect small Earth-like planets, and possibly provide targets for the spaced based telescopes and SETI projects; however, the most important implication is that perhaps for the first time in history, amateurs and professionals from around the world are engaged in this subject and working together to share the data. The greatest reason for this collaboration is telescope time: there are only a finite number of professional telescopes with tightly guarded schedules that limit prolonged data collection. Amateurs have all the time they can spend and the equipment to help. There are several methods of detecting these exoplanets; however, amateur astronomers are only capable of performing only two – the measurement of radial velocity and the transit method, both will be discussed in detail. The Formation of a Solar System 1 The foundation is the base in which ideas are built upon. In this case, the foundation of this project will be to briefly visit the current theory of how a solar system is formed. This is important because this gives clues for us to know what we are looking for when we study other star systems. The formation of our Solar System can be traced all the way back to the Big Bang. With hydrogen being the most abundant element in the Universe, clouds of hydrogen began to form under its own gravity. By gravity and rotation, these clouds compressed to form the first stars (and galaxies) of the Universe – Population II stars. Population II is the designation for stars that do not contain heavy elements – that is heavier than helium. The natural cycle of these stars resulted in supernova explosions that introduced the heavier elements into the interstellar spaces due to intense heat and pressure of the explosion. While hydrogen is still the most abundant element, other heavier elements are now present – elements like iron, carbon, silicone and many others. Supernova stimulates nearby hydrogen clouds and introduces the heavy elements. As the stimulated clouds collapse, they form something a little different, a proto-planetary disk, as well as the central proto-star (figure 1). When these metal-rich stars – called Population I – are formed, they may host a ring of molecular material that begins to collide with one another resulting in the sweeping up of material. Figure 1: The molecular cloud begins to collapse, eventually forming a dense area at the heart of the cloud. The continual contraction raises the temperature of the cloud causing rotation. Eventually, there will be enough heat and density that a T Tauri star will form at the heart of this cloud with the remaining disk material possibly forming planets. A: the slowly rotating molecular cloud B: Faster rotation with denser and hotter central region C: Faster rotation with T Tauri star at the center of rotation By retaining orbital momentum, the shape of the disk is formed. The consequence of this is the formation of larger objects that also contain gravity and also spin as a result of the orbiting momentum and the further collection of material as it “sweeps” through the ring. 2 These objects are called planetesimals, and continue to collect more material as they continue to orbit the host star. Proof to support this Solar Nebula theory has been discovered by the study of ancient meteorites - called chondrites - found on Earth (Beatty et al, 1999). The material makeup of the chondrites, which originate from space, is found to contain the same elements found on Earth – one of which is an isotope of hydrogen called deuterium. Additional proof to this theory comes from remarkable images taken by the Hubble Space Telescope. Looking deep into the heart of the Great Orion Nebula (figure 2), the Hubble Telescope was able to spy tiny solar systems in the making (figure 3). These images show the T Tauri star in the center of a protoplanetary disks, or proplyds. This offers us a remarkable look into the very earliest history into the formation of a stellar system (Figures 4, 5, and 6). Figure 2: This beautiful image of the Orion nebula was captured using special filters by amateur astronomer Russell Crowman using a 14.5 inch telescope and a Santa Barbara Instrument Group ST-11000 CCD camera. Figure 3: This close-up image of the center of Orion nebula – care of the Hubble Space Telescope – shows several knotted looking objects. These are the proplyds. 3 While these proplyds look very impressive, the host T Tauri stars are stars that have not initiated hydrogen fusing – and must be observed in the near infrared. Much of the material that surrounds the proto-star will be blown away by the shockwave resulting from the initiation of hydrogen fusion at the heart of the star (Ostlie and Carroll, 1996). Figures 4, 5, and 6 (clockwise): These are Hubble Telescope close-up images of three of these knots. They show disks of dusty material surrounding their host T-Tauri stars. Because of the density of the dust, these images are photographed in the near-infrared so the host star is visible. Evidence of possible planetary formation Have you ever looked into a telescope at a star, only to find that the star does not appear any larger than with the unaided eye? This same phenomenon is familiar with even the largest telescopes. As a matter of fact, the only star that has been able to be resolved into a disk on a consistent basis is Betelgeuse - the red giant star forming the upper left shoulder of the constellation of Orion (Burnham, 1978). This red giant star is only 520 light years away, and with a diameter between 550 to 920 times our Sun (Betelgeuse is a variable star, so its size fluctuates) it can be easily resolved by our largest optical telescopes (figure 7). With this exception, the majority of stars cannot be resolved as a disk. 4 Figure 7: This image of Betelgeuse was taken by the 50cm COAST telescope. It shows the surface of Betelgeuse, which from Earth is only 0.1 arc-seconds across. For comparison, the planet Pluto is also only 0.1 arc-seconds across. On average, the planet Mars is around 3 arc-seconds across. With this fact alone, it seems impossible to detect a small planet orbiting a star – after all, if we cannot even resolve the star, how can we possibly detect a planet which is much smaller and does not give off any light? There is one method of imaging that will allow us a view of the end stage of the protoplanetary disk. By masking out the bright central star, it is possible to image the residual disk material called the circumstellar disk (figure 8). Figure 8: By masking out this central star (star designation HD 141569A), imaging of the circumstellar disk is possible. All the stars in the field are overexposed, so look much larger than they would be under normal imaging circumstances. Masking of the image is important as the host object is a main-sequence star – that is, a star that has already initiated hydrogen fusing. While much of the protoplanetary nebula can be swept away during the initiation of hydrogen fusion, these images of the circumstellar disks around a main-sequence star tells us that planetary formation is even more likely than with evidence of the protoplanetary disks. 5 While the proplyds and circumstellar disks offer evidence to material that can result in planetary formation, another type of object can also be used to look for evidence of circumstellar disk formation. Herbig-Haro objects (figure 9) are T Tauri stars with an active circumstellar accretion disk (Ostlie and Carroll, 1996). The rotation of this disk is shown by massive lobes of gas that appear perpendicular to the rotating disk. These tell us that the protoplanetary material does in fact rotate about their host star, which can result in planet formation. Figure 9: These are four Herbig-Haro objects photographed by the Hubble Space Telescope. The green jets are the expulsion of gas from the perpendicular circumstellar disk. These jets are present as a result of circumstellar disk rotation. Perhaps the most remarkable image of a circumstellar disk is that of Beta Pictoris.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Pre-Contact Astronomy Ragbir Bhathal
    Journal & Proceedings of the Royal Society of New South Wales, Vol. 142, p. 15–23, 2009 ISSN 0035-9173/09/020015–9 $4.00/1 Pre-contact Astronomy ragbir bhathal Abstract: This paper examines a representative selection of the Aboriginal bark paintings featuring astronomical themes or motives that were collected in 1948 during the American- Australian Scientific Expedition to Arnhem Land in north Australia. These paintings were studied in an effort to obtain an insight into the pre-contact social-cultural astronomy of the Aboriginal people of Australia who have lived on the Australian continent for over 40 000 years. Keywords: American-Australian scientific expedition to Arnhem Land, Aboriginal astron- omy, Aboriginal art, celestial objects. INTRODUCTION tralia. One of the reasons for the Common- wealth Government supporting the expedition About 60 years ago, in 1948 an epic journey was that it was anxious to foster good relations was undertaken by members of the American- between Australia and the US following World Australian Scientific Expedition (AAS Expedi- II and the other was to establish scientific tion) to Arnhem Land in north Australia to cooperation between Australia and the US. study Aboriginal society before it disappeared under the onslaught of modern technology and The Collection the culture of an invading European civilisation. It was believed at that time that the Aborig- The expedition was organised and led by ines were a dying race and it was important Charles Mountford, a film maker and lecturer to save and record the tangible evidence of who worked for the Commonwealth Govern- their culture and society.
    [Show full text]
  • Arxiv:1809.07342V1 [Astro-Ph.SR] 19 Sep 2018
    Draft version September 21, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 FAR-ULTRAVIOLET ACTIVITY LEVELS OF F, G, K, AND M DWARF EXOPLANET HOST STARS* Kevin France1, Nicole Arulanantham1, Luca Fossati2, Antonino F. Lanza3, R. O. Parke Loyd4, Seth Redfield5, P. Christian Schneider6 Draft version September 21, 2018 ABSTRACT We present a survey of far-ultraviolet (FUV; 1150 { 1450 A)˚ emission line spectra from 71 planet- hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 { 360 A˚ extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III,N V,C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 { 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F { M star sample is characterized by a power-law decline (with index α ≈ −1.1), starting at rotation periods & 3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 { 360 A˚ band with an accuracy of roughly a factor of ≈ 2.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • A Proxy for Stellar Extreme Ultraviolet Fluxes
    Astronomy & Astrophysics manuscript no. main ©ESO 2020 November 2, 2020 Ca ii H&K stellar activity parameter: a proxy for stellar Extreme Ultraviolet Fluxes A. G. Sreejith1, L. Fossati1, A. Youngblood2, K. France2, and S. Ambily2 1 Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria e-mail: [email protected] 2 Laboratory for Atmospheric and Space Physics, University of Colorado, UCB 600, Boulder, CO, 80309, USA Received date / Accepted date ABSTRACT Atmospheric escape is an important factor shaping the exoplanet population and hence drives our understanding of planet formation. Atmospheric escape from giant planets is driven primarily by the stellar X-ray and extreme-ultraviolet (EUV) radiation. Furthermore, EUV and longer wavelength UV radiation power disequilibrium chemistry in the middle and upper atmosphere. Our understanding of atmospheric escape and chemistry, therefore, depends on our knowledge of the stellar UV fluxes. While the far-ultraviolet fluxes can be observed for some stars, most of the EUV range is unobservable due to the lack of a space telescope with EUV capabilities and, for the more distant stars, to interstellar medium absorption. Thus, it becomes essential to have indirect means for inferring EUV fluxes from features observable at other wavelengths. We present here analytic functions for predicting the EUV emission of F-, G-, K-, and M-type ′ stars from the log RHK activity parameter that is commonly obtained from ground-based optical observations of the ′ Ca ii H&K lines. The scaling relations are based on a collection of about 100 nearby stars with published log RHK and EUV flux values, where the latter are either direct measurements or inferences from high-quality far-ultraviolet (FUV) spectra.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • The ELODIE Survey for Northern Extra-Solar Planets?,??,???
    A&A 410, 1039–1049 (2003) Astronomy DOI: 10.1051/0004-6361:20031340 & c ESO 2003 Astrophysics The ELODIE survey for northern extra-solar planets?;??;??? I. Six new extra-solar planet candidates C. Perrier1,J.-P.Sivan2,D.Naef3,J.L.Beuzit1, M. Mayor3,D.Queloz3,andS.Udry3 1 Laboratoire d’Astrophysique de Grenoble, Universit´e J. Fourier, BP 53, 38041 Grenoble, France 2 Observatoire de Haute-Provence, 04870 St-Michel L’Observatoire, France 3 Observatoire de Gen`eve, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland Received 17 July 2002 / Accepted 1 August 2003 Abstract. Precise radial-velocity observations at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spec- trograph have been undertaken since 1994. In addition to several discoveries described elsewhere, including and following that of 51 Peg b, they reveal new sub-stellar companions with essentially moderate to long periods. We report here about such companions orbiting five solar-type stars (HD 8574, HD 23596, HD 33636, HD 50554, HD 106252) and one sub-giant star (HD 190228). The companion of HD 8574 has an intermediate period of 227.55 days and a semi-major axis of 0.77 AU. All other companions have long periods, exceeding 3 years, and consequently their semi-major axes are around or above 2 AU. The detected companions have minimum masses m2 sin i ranging from slightly more than 2 MJup to 10.6 MJup. These additional objects reinforce the conclusion that most planetary companions have masses lower than 5 MJup but with a tail of the mass dis- tribution going up above 15 MJup.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Orbital and Physical Characteristics of Extrasolar Planets Systems
    ASTRONOMY AND SPACE SCIENCE eds. M.K. Tsvetkov, L.G. Filipov, M.S. Dimitrijevic,´ L.C.ˇ Popovic,´ Heron Press Ltd, Sofia 2007 Orbital and Physical Characteristics of Extrasolar Planets Systems D. Petkova1, V. Shkodrov2 1Shumen University, Faculty of Science, 9700 Shumen, Bulgaria 2Institute of Astronomy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria Abstract. The article presents part of the researches on extrasolar planets, which we recently performed. This newly discovered phenomenon attracted many astronomers ‘attention over the past years. More than 170 planets systems have been already mapped and a significant quantity of observation material has been accumulated. These results allow us to build quite reasonable statistical analyses. Besides, The perspective to shortly perform observations of this phe- nomenon from the National Astronomy Observatory in Rozen is an additional boost for us to invest more effort in our researches. Our analysis is based on observations and on data, catalogued in 2006. Our main goal was to survey planet system’ distribution as a function of their orbital and physical characteristics. 1 Introduction The new observations definitely show that more and more are the planets out- side of the Solar system. This circumstance gives enough reasons the obtained observational data to be analyzed statistically with respect to their orbital char- acteristics. This problem has been thoroughly investigated since the first discov- eries of extrasolar planetary systems [1,2]. The analysis has been reiterated with the increase of the number of planets with the purpose to reject or confirm the results obtained previously. Precisely to this end, here we will discuss and ana- lyze the dynamical and physical characteristics of the discovered and observed up to now extrasolar planet systems.
    [Show full text]
  • Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution
    Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution Contact: Jason Aufdenberg (386) 226-7123 Embry-Riddle Aeronautical University, Physical Sciences Department [email protected] Co-authors: Stephen Ridgway (National Optical Astronomy Observatory) Russel White (Georgia State University) Fundamental Stellar Astrophysics Revealed at Very High Angular Resolution 1 Introduction A detailed understanding of stellar structure and evolution is vital to all areas of astrophysics. In exoplanet studies the age and mass of a planet are known only as well as the age and mass of the hosting star, mass transfer in intermediate mass binary systems lead to type Ia Su- pernova that provide the strictest constraints on the rate of the universe’s acceleration, and massive stars with low metallicity and rapid rotation are a favored progenitor for the most luminous events in the universe, long duration gamma ray bursts. Given this universal role, it is unfortunate that our understanding of stellar astrophysics is severely limited by poorly determined basic stellar properties - effective temperatures are in most cases still assigned by blunt spectral type classifications and luminosities are calculated based on poorly known distances. Moreover, second order effects such as rapid rotation and metallicity are ignored in general. Unless more sophisticated techniques are developed to properly determine funda- mental stellar properties, advances in stellar astrophysics will stagnate and inhibit progress in all areas of astrophysics. Fortunately, over the next decade there are a number of observa- tional initiatives that have the potential to transform stellar astrophysics to a high-precision science. Ultra-precise space-based photometry from CoRoT (2007+) and Kepler (2009+) will provide stellar seismology for the structure and mass determination of single stars.
    [Show full text]