Application Title: Modification of a Burkholderia Soil Bacteria for The

Total Page:16

File Type:pdf, Size:1020Kb

Application Title: Modification of a Burkholderia Soil Bacteria for The NO3P Develop in containment a project of low risk genetically ER-AF-NO3P-3 modified organisms by rapid assessment 12/07 Application title: Modification of bacteria for the creation of a bacterial biosensor to detect and quantify various compounds or elements. Applicant organisation: Environmental Science and Research LTD. Considered by: IBSC ERMA √ Please clearly identify any confidential information and attach as a separate appendix. Please complete the following before submitting your application: All sections completed Yes Appendices enclosed Yes/NA Confidential information identified and enclosed separately Yes/NA Copies of references attached Yes/NA Application signed and dated Yes Electronic copy of application e-mailed to ERMA New Yes Zealand Signed: Joanna Lloyd Date:24/06/2009 20 Customhouse Quay Cnr Waring Taylor and Customhouse Quay PO Box 131, Wellington Phone: 04 916 2426 Fax: 04 914 0433 Email: [email protected] Website: www.ermanz.govt.nz Develop in containment a project of low risk genetically modified organisms by rapid assessment 1. An associated User Guide NO3P is available for this form and we strongly advise that you read this User Guide before filling out this application form. If you need guidance in completing this form please contact ERMA New Zealand or your IBSC. 2. This application form only covers the development of low-risk genetically modified organisms that meet Category A and/or B experiments as defined in the HSNO (Low-Risk Genetic Modification) Regulations 2003. 3. If you are making an application that includes not low-risk genetic modification experiments, as described in the HSNO (Low-Risk Genetic Modification) Regulations 2003, then you should complete form NO3O instead. 4. This form replaces all previous versions of Form NO3P. 5. This application form may be used to seek approvals for more than one new organism where the organisms are used in the same project, or have a similar risk profile. 6. Any supporting material that does not fit in the application form must be clearly labelled, cross- referenced, and included as appendices to the application form. 7. Commercially sensitive information must be collated in a separate appendix but referenced in the application. You need to justify why you consider the material commercially sensitive, and make sure it is clearly labelled as such. Confidentiality of material is subject to the provisions of the Official Information Act 1982 and the basis of which is that information should be publicly available unless there is good reason to protect it. 8. Applicants must sign the form and enclose the correct application fee (plus GST) if it is submitted to ERMA New Zealand. Details of the application fee can be found in our published Schedule of Fees and Charges. Please check with ERMA New Zealand staff or the ERMA New Zealand website for the latest schedule of fees. 9. Unless otherwise indicated, all sections of this form must be completed for the application to be progressed. 10. Please provide an electronic version of the completed application form, as well as sending a signed hard copy. You can get more information by contacting your Institutional Biological Safety Committee or ERMA New Zealand. This version of the application form was approved by the Chief Executive of ERMA New Zealand on 12 November 2007. Page 2 of 28 Develop in containment a project of low risk genetically modified organisms by rapid assessment Section One – Applicant details refer to page 9 of the user guide Name and details of the organisation making the application: Name: Environmental Science and Research LTD Postal Address: Po Box 50-348 Physical Address: 34 Kenepuru Drive Phone: 04 9140700 Ext 7814 Fax: 04 9140700 Email: Name and details of the key contact person (if different from above): Name: Joanna Lloyd Postal Address: Physical Address: Phone: Fax: Email: [email protected] Name and details of a contact person in New Zealand, if the applicant is overseas: Name: Postal Address: Physical Address: Phone: Fax: Email: Note: The key contact person should have sufficient knowledge of the application to respond to queries from ERMA New Zealand staff. Page 3 of 28 Develop in containment a project of low risk genetically modified organisms by rapid assessment Section Two: Lay summary and scientific project description refer to page 9 of the user guide Lay summary of the application (approximately 200 words) Note: This summary should describe the genetically modified organism(s) being developed, the purpose of the application or what you want to do with the organisms(s). Use simple non- technical language. Environmental Science and Research LTD have previously contributed to research into the application and use of bacteria for the detection and quantification of organic and inorganic compounds [1, 2]. This current research project will allow the real-time detection and quantification of various compounds/elements thereby enabling enhanced environmental protection and management. The organism will be developed using a highly specific, genetically modified (GM) non native model bacterium such as Escherichia coli. Biologically-based recognition mechanisms will be used such as a reporter gene that can visually detect when the organism encounters the compound in question. This research will involve no native or human genetic material. Genetic modification of these developed organisms is considered “low risk” and any genetic modification performed under this application will not increase the pathogenicity of these organisms or increase their ability to form a damaging self sustaining population. The modified organisms are limited to the approved work area by stringent laboratory protocols already in place. Scientific project description (describe the project, including the background, aims and a description of the wider project) refer to page 10 of the user guide Note: This section is intended to put the genetically modified organism(s) being developed in perspective of the wider project(s) that they will be used in. You may use more technical language but make sure that any technical words are included in the Glossary. Page 4 of 28 Develop in containment a project of low risk genetically modified organisms by rapid assessment Objective: To develop in containment a bacterial biosensor (a bacteria with the ability to provide a measurable response to a particular compound(s) or element(s). Proposed research: Bacterial biosensors are biological tools that can probe the environment for the presence of compounds. They have been compared to the traditional „canaries in a mine‟, as they can detect chemicals rapidly, safely, and at very low concentrations. For example, studies have shown that the organic compound, 1080, can be metabolised by soil micro- organisms, such as Pseudomonas and Fusarium species [3] . The gene sequences for the enzymes capable of defluorinating 1080 have been isolated [4]. We will couple defluorination genes with a reporter gene (e.g. bacterial bioluminescence or Green Fluorescent Protein) creating a genetically modified bacteria that „turns on‟ reporter gene expression in response to exposure to a particular compound or element , to give an optically detectable signal. Naphthalene degradation and heavy metal resistance genes have previously been isolated, linked to lux-reporter genes and developed into specific biosensors, thus the technology is known and can be applied to the construction of a specific biosensor [5]. The sensitivity of these kinds of sensors is at sub-toxic concentrations, thus, the working range (and thus the sensitivity) is remarkably low. In the case of a specific biosensor for the heavy metal cadmium, the limit of detection was found to be 0.0008 mg/l, we would expect the biosensor to have similar sensitivity [6]. This research programme will enhance environmental management of various compounds or elements, e.g. iron. To achieve this, we will develop a highly specific, bacterial biosensor that emits light in direct proportion to the concentration of the compound or element present. The system will complement conventional chemical analysis by providing a rapid (< 60 min), inexpensive (< $100) preliminary screen for various compounds or elements. In addition, the biosensor analysis will require little or no sample preparation, and have the potential for both laboratory and on-site analysis. GMOs to be developed: Burkholderia and/or E. Coli and/or Actinobacter and/or Campylobacter and/or Pseudomonas bacteria will be modified with a standard commercial plasmid vector or a specifically designed plasmid vector containing bacterial DNA (derived from either risk group 1 or risk group 2 bacteria) for example a DNA sequence (promoter) isolated from Burkholderia spFA1 which is capable of quantitatively responding to 1080 concentrations. This DNA sequence will be fused to reporter genes such as a “light producing” gene (lux) or a Green Fluorescent Protein (GFP) gene. Non native Bacterial DNA (risk group 1 or 2) will be sourced from culture collections or from environmental samples (with the necessary approval if required). Page 5 of 28 Develop in containment a project of low risk genetically modified organisms by rapid assessment Short summary of purpose (please provide a short summary of the purpose of the application) (255 characters or less, including spaces) refer to page 11 of the user guide. This section will be transferred into the decision document. To develop in containment genetically modified bacteria that can detect and quantify compounds and/or elements. Section Three –Description of the organism(s) to be developed refer to page 13 of the user guide 3.1 Identification of the host organism to be modified Complete this section separately for each host organism to be modified. Latin binomial, including full Burkholderia cepacia (Palleroni and Holmes taxonomic authority: 1981) Yabuuchi et al. 1993 Common name(s), if any: Type of organism (eg bacterium, Microorganism / bacterium virus, fungus, plant, animal, animal cell): Taxonomic class, order and family: Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Strain(s) if relevant: Strain: Burkholderia cepacia complex genomovar I.
Recommended publications
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Detection of Helicobacter Pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter Pylori Strains
    Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains Montserrat Palau de Miguel Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License. UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ DEPARTAMENT DE BIOLOGIA, SANITAT I MEDI AMBIENT SECCIÓ DE MICROBIOLOGIA Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains MONTSERRAT PALAU DE MIGUEL Setembre 2019 UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ PROGRAMA DE DOCTORAT DE BIOTECNOLOGIA Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains Memòria presentada per Montserrat Palau de Miguel per optar al títol de doctor per la Universitat de Barcelona Director i Tutor Doctoranda David Miñana i Galbis Montserrat Palau de Miguel MONTSERRAT PALAU DE MIGUEL Setembre 2019 “If you go immunosuppressed for a little bit, they’ll kill you. When you die, they’ll eat you. They don’t care. It’s not a relationship. It’s just biology.” Ed Yong. I contain multitudes "Science is not only a discipline of reason but also one of romance and passion." Stephen Hawking ACKNOWLEDGMENTS Necessitaria moltes pàgines per poder agrair a tothom aquests 5 anys de doctorat... Primer que res al David, gràcies per creure en mi des del primer moment. Amb tu vaig començar aquesta aventura quan només feia segon de carrera i vaig atendre les teves classes de Microbiologia I.
    [Show full text]
  • Cloning, Expression, Purification, Regulation, and Subcellular
    Cloning, Expression, Purification, Regulation, and Subcellular Localization of a Mini-protein from Campylobacter jejuni Soumeya Aliouane, Jean-Marie Pages, Jean-Michel Bolla To cite this version: Soumeya Aliouane, Jean-Marie Pages, Jean-Michel Bolla. Cloning, Expression, Purification, Regula- tion, and Subcellular Localization of a Mini-protein from Campylobacter jejuni. Current Microbiology, Springer Verlag, 2016, 10.1007/s00284-015-0980-x. hal-01463172 HAL Id: hal-01463172 https://hal-amu.archives-ouvertes.fr/hal-01463172 Submitted on 16 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Curr Microbiol (2016) 72:511–517 DOI 10.1007/s00284-015-0980-x Cloning, Expression, Purification, Regulation, and Subcellular Localization of a Mini-protein from Campylobacter jejuni 1 1 1 Soumeya Aliouane • Jean-Marie Page`s • Jean-Michel Bolla Received: 15 September 2015 / Accepted: 28 November 2015 / Published online: 11 January 2016 Ó Springer Science+Business Media New York 2016 Abstract The Cj1169c-encoded putative protein of campylobacteriosis to public health systems and to lost Campylobacter was expressed and purified from E. coli productivity in the EU is estimated by European Food after sequence optimization. The purified protein allowed Safety Authority to be around EUR 2.4 billion a year the production of a specific rabbit antiserum that was used (http://www.efsa.europa.eu).
    [Show full text]
  • Comparative Analysis of Four Campylobacterales
    REVIEWS COMPARATIVE ANALYSIS OF FOUR CAMPYLOBACTERALES Mark Eppinger*§,Claudia Baar*§,Guenter Raddatz*, Daniel H. Huson‡ and Stephan C. Schuster* Abstract | Comparative genome analysis can be used to identify species-specific genes and gene clusters, and analysis of these genes can give an insight into the mechanisms involved in a specific bacteria–host interaction. Comparative analysis can also provide important information on the genome dynamics and degree of recombination in a particular species. This article describes the comparative genomic analysis of representatives of four different Campylobacterales species — two pathogens of humans, Helicobacter pylori and Campylobacter jejuni, as well as Helicobacter hepaticus, which is associated with liver cancer in rodents and the non-pathogenic commensal species, Wolinella succinogenes. ε CHEMOLITHOTROPHIC The -subdivision of the Proteobacteria is a large group infection can lead to gastric cancer in humans 9–11 An organism that is capable of of CHEMOLITHOTROPHIC and CHEMOORGANOTROPHIC microor- and liver cancer in rodents, respectively .The using CO, CO2 or carbonates as ganisms with diverse metabolic capabilities that colo- Campylobacter representative C. jejuni is one of the the sole source of carbon for cell nize a broad spectrum of ecological habitats. main causes of bacterial food-borne illness world- biosynthesis, and that derives Representatives of the ε-subgroup can be found in wide, causing acute gastroenteritis, and is also energy from the oxidation of reduced inorganic or organic extreme marine and terrestrial environments ranging the most common microbial antecedent of compounds. from oceanic hydrothermal vents to sulphidic cave Guillain–Barré syndrome12–15.Besides their patho- springs. Although some members are free-living, others genic potential in humans, C.
    [Show full text]
  • Novel Immunomodulatory Flagellin-Like Protein Flac in Campylobacter Jejuni and Other Campylobacterales
    RESEARCH ARTICLE Host-Microbe Biology crossmark Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales Eugenia Faber,a,b Eugenia Gripp,a,b Sven Maurischat,c* Bernd Kaspers,d Downloaded from Karsten Tedin,c Sarah Menz,a,b Aleksandra Zuraw,e Olivia Kershaw,e Ines Yang,a,b Silke Rautenschlein,f Christine Josenhansa,b Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germanya; German Center for Infection Research (DZIF), Hannover, Germanyb; Institute of Microbiology and Epizootics, Free University, Berlin, Germanyc; Institute of Animal Physiology, Ludwig Maximilian University Munich, Munich, Germanyd; Institute of Veterinary Pathology, Free University Berlin, Berlin, Germanye; Clinic for Poultry, Veterinary Medical School, Hannover, Germanyf * Present address: Sven Maurischat, Federal Institute for Risk Assessment, Berlin, Germany. http://msphere.asm.org/ ABSTRACT The human diarrheal pathogens Campylobacter jejuni and Campylobac- ter coli interfere with host innate immune signaling by different means, and their Received 13 October 2015 Accepted 28 October 2015 Published 2 December 2015 flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune Citation Faber E, Gripp E, Maurischat S, receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that Kaspers B, Tedin K, Menz S, Zuraw A, Kershaw the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and O, Yang I, Rautenschlein S, Josenhans C. 2015. other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC Novel immunomodulatory flagellin-like protein FlaC in Campylobacter jejuni and other shows striking sequence identity in its D1 domains to TLR5-activating flagellins of Campylobacterales.
    [Show full text]
  • The Characteristics of Gut Microbiota and Commensal Enterobacteriaceae Isolates in Tree Shrew
    Gu et al. BMC Microbiology (2019) 19:203 https://doi.org/10.1186/s12866-019-1581-9 RESEARCHARTICLE Open Access The characteristics of gut microbiota and commensal Enterobacteriaceae isolates in tree shrew (Tupaia belangeri) Wenpeng Gu1,2, Pinfen Tong1, Chenxiu Liu1, Wenguang Wang1, Caixia Lu1, Yuanyuan Han1, Xiaomei Sun1, De Xuan Kuang1,NaLi1 and Jiejie Dai1* Abstract Background: Tree shrew is a novel laboratory animal with specific characters for human disease researches in recent years. However, little is known about its characteristics of gut microbial community and intestinal commensal bacteria. In this study, 16S rRNA sequencing method was used to illustrate the gut microbiota structure and commensal Enterobacteriaceae bacteria were isolated to demonstrate their features. Results: The results showed Epsilonbacteraeota (30%), Proteobacteria (25%), Firmicutes (19%), Fusobacteria (13%), and Bacteroidetes (8%) were the most abundant phyla in the gut of tree shrew. Campylobacteria, Campylobacterales, Helicobacteraceae and Helicobacter were the predominant abundance for class, order, family and genus levels respectively. The alpha diversity analysis showed statistical significance (P < 0.05) for operational taxonomic units (OTUs), the richness estimates, and diversity indices for age groups of tree shrew. Beta diversity revealed the significant difference (P < 0.05) between age groups, which showed high abundance of Epsilonbacteraeota and Spirochaetes in infant group, Proteobacteria in young group, Fusobacteria in middle group, and Firmicutes in senile group. The diversity of microbial community was increased followed by the aging process of this animal. 16S rRNA gene functional prediction indicated that highly hot spots for infectious diseases, and neurodegenerative diseases in low age group of tree shrew (infant and young).
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Campylobacter Jejuni: Collective Components Promoting a Successful Enteric Lifestyle
    REVIEWS Campylobacter jejuni: collective components promoting a successful enteric lifestyle Peter M. Burnham and David R. Hendrixson* Abstract | Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review , we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease. Campylobacter jejuni is a commensal bacterium harbour a plentiful supply of nutrients and carbon that resides in the intestinal tracts of many wild and sources that support C. jejuni metabolism and robust agriculture- associated animals. Poultry flocks, espe- growth. Furthermore, the intestinal microbiota in these cially chickens, are commonly colonized with C. jejuni. locations has been proposed to contribute metabolites As such, handling and consumption of poultry meats that influence the expression of C. jejuni colonization contaminated with the bacterium are leading risk fac- factors and promote growth7 (and reviewed in REF.8).
    [Show full text]
  • Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution
    REVIEW ARTICLE published: 26 July 2012 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2012.00098 Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution Vaibhav Bhandari , Hafiz S. Naushad and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada Edited by: The analyses of genome sequences have led to the proposal that lateral gene transfers Yousef Abu Kwaik, University of (LGTs) among prokaryotes are so widespread that they disguise the interrelationships Louisville School of Medicine, USA among these organisms. This has led to questioning of whether the Darwinian model Reviewed by: of evolution is applicable to prokaryotic organisms. In this review, we discuss the Srinand Sreevastan, University of Minnesota, USA usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) Andrey P.Anisimov, State Research and conserved signature proteins (CSPs) for understanding the evolutionary relationships Center for Applied Microbiology and among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The Biotechnology, Russia analyses of genomic sequences have identified large numbers of CSIs and CSPs that are *Correspondence: unique properties of different groups of prokaryotes ranging from phylum to genus levels. Radhey S. Gupta, Department of Biochemistry and Biomedical The species distribution patterns of these molecular signatures strongly support a tree-like Sciences, McMaster University, vertical inheritance of the genes containing these molecular signatures that is consistent 1200 Main Street West, Health with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Sciences Center, Hamilton, Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that ON L8N 3Z5, Canada.
    [Show full text]
  • APUTS) Reporting Terminology and Codes Microbiology (V1.0
    AUSTRALIAN PATHOLOGY UNITS AND TERMINOLOGY (APUTS) Reporting Terminology and Codes Microbiology (v1.0) 1 12/02/2013 APUTS Report Information Model - Urine Microbiology Page 1 of 1 Specimen Type Specimen Macro Time Glucose Bilirubin Ketones Specific Gravity pH Chemistry Protein Urobilinogen Nitrites Haemoglobin Leucocyte Esterases White blood cell count Red blood cells Cells Epithelial cells Bacteria Microscopy Parasites Microorganisms Yeasts Casts Crystals Other elements Antibacterial Activity No growth Mixed growth Urine MCS No significant growth Klebsiella sp. Bacteria ESBL Klebsiella pneumoniae Identification Virus Fungi Growth of >10^8 org/L 10^7 to 10^8 organism/L of mixed Range or number Colony Count growth of 3 organisms 19090-0 Culture Organism 1 630-4 LOINC >10^8 organisms/L LOINC Significant growth e.g. Ampicillin 18864-9 LOINC Antibiotics Susceptibility Method Released/suppressed None Organism 2 Organism 3 Organism 4 None Consistent with UTI Probable contamination Growth unlikely to be significant Comment Please submit a repeat specimen for testing if clinically indicated Catheter comments Sterile pyuria Notification to infection control and public health departments PUTS Urine Microbiology Information Model v1.mmap - 12/02/2013 - Mindjet 12/02/2013 APUTS Report Terminology and Codes - Microbiology - Urine Page 1 of 3 RCPA Pathology Units and Terminology Standardisation Project - Terminology for Reporting Pathology: Microbiology : Urine Microbiology Report v1 LOINC LOINC LOINC LOINC LOINC LOINC LOINC Urine Microbiology Report
    [Show full text]
  • Accumulation and Expression of Horizontally Acquired Genes in Arcobacter Cryaerophilus That Thrives in Sewage
    Accumulation and expression of horizontally acquired genes in Arcobacter cryaerophilus that thrives in sewage Jess A. Millar and Rahul Raghavan Biology Department, Portland State University, Portland, OR, United States ABSTRACT We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of putative antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of candidate ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water. Subjects Environmental Sciences, Genomics, Microbiology Keywords Arcobacter cryaerophilus, Sewage, Multidrug resistance INTRODUCTION Submitted 30 November 2016 Accepted 3 April 2017 Over the past few decades, based on numerous studies that examined the bacterial Published 25 April 2017 composition of wastewater during varying stages of treatment, there is growing evidence Corresponding author that sewage is an important hub for horizontal gene transfer (HGT) of antibiotic resistance Rahul Raghavan, [email protected] genes (e.g., Baquero, Martínez & Cantón, 2008; Zhang, Shao & Ye, 2012; Rizzo et al., 2013; Academic editor Pehrsson et al., 2016).
    [Show full text]