ACVIM Giger Cyst+Fanconi 2014F
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Leading Article the Molecular and Genetic Base of Congenital Transport
Gut 2000;46:585–587 585 Gut: first published as 10.1136/gut.46.5.585 on 1 May 2000. Downloaded from Leading article The molecular and genetic base of congenital transport defects In the past 10 years, several monogenetic abnormalities Given the size of SGLT1 mRNA (2.3 kb), the gene is large, have been identified in families with congenital intestinal with 15 exons, and the introns range between 3 and 2.2 kb. transport defects. Wright and colleagues12 described the A single base change was identified in the entire coding first, which concerns congenital glucose and galactose region of one child, a finding that was confirmed in the malabsorption. Subsequently, altered genes were identified other aZicted sister. This was a homozygous guanine to in partial or total loss of nutrient absorption, including adenine base change at position 92. The patient’s parents cystinuria, lysinuric protein intolerance, Menkes’ disease were heterozygotes for this mutation. In addition, it was (copper malabsorption), bile salt malabsorption, certain found that the 92 mutation was associated with inhibition forms of lipid malabsorption, and congenital chloride diar- of sugar transport by the protein. Since the first familial rhoea. Altered genes may also result in decreased secretion study, genomic DNA has been screened in 31 symptomatic (for chloride in cystic fibrosis) or increased absorption (for GGM patients in 27 kindred from diVerent parts of the sodium in Liddle’s syndrome or copper in Wilson’s world. In all 33 cases the mutation produced truncated or disease)—for general review see Scriver and colleagues,3 mutant proteins. -
What I Tell My Patients About Cystinuria
BRITISH JOURNAL OF RENAL MEDICINE 2016; Vol 21 No 1 Patient information John A Sayer MB ChB FRCP PhD Consultant What I tell my patients Nephrologist1,2 Charles Tomson MA BM BCh FRCP DM Consultant Nephrologist2 about cystinuria 1 Institute of Genetic Medicine, Newcastle Cystinuria is an inherited condition that causes kidney stones in children and adults. University 2 Renal Services, Newcastle upon Tyne John A Sayer and Charles Tomson describe the effects of this condition and how to Hospitals NHS Foundation Trust, manage it successfully. Freeman Hospital, Newcastle upon Tyne Cystine is an amino acid found in high- Box 1. You say stones… I say calculi protein foods such as meat, eggs and dairy. High concentrations of cystine, particularly ‘Kidney stone’ and ‘renal calculus’ means the same thing – a solid piece of material that forms in the in acidic urine, result in crystallisation of kidneys. The word ‘calculus’ is derived from Latin, cystine, leading to the formation of kidney literally meaning ‘small pebble’, as used on an stones (see Box 1). These cystine stones are a abacus; the plural of calculus is calculi. ‘Nephrolith’ rare form of kidney stone, accounting for is another name for a kidney stone around 6% of kidney stones in children and around 1% of those in adults.1 Cystinuria is inherited in different ways and this can Cystinuria is estimated to affect 1 in 7,000 people.2 be confusing. Most patients have to inherit two faulty Despite the condition being present from birth, most copies of the gene involved (one inherited from their people affected will get their first stone in their mother and one from their father) to be affected by twenties, although a quarter of patients present in the condition. -
Amyloid Like Aggregates Formed by the Self-Assembly of Proline And
Please do not adjust margins Journal Name ARTICLE Amyloid like aggregates formed by the self-assembly of proline and Hydroxyproline Bharti Koshtia, Ramesh Singh Chilwalb, Vivekshinh Kshtriyaa, Shanka Walia c, Dhiraj Bhatiac, K.B. Joshib* and Nidhi Goura* a Department of Chemistry, Indrashil University, Mehsana, Gujarat, India b Department of Chemistry, Dr. Hari Singh Gour, Sagar University, Madhya Pradesh, India c Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, India Abstract: Single amino acid based self-assembled structures have gained a lot of interest recently owing to their pathological significance in metabolite disorders. There is plethora of significant research work which illustrate amyloid like characteristics of assemblies formed by aggregation of single amino acids like Phenylalanine, Tyrosine, Tryptophan, Cysteine and Methionine and its implications in pathophysiology of single amino acid metabolic disorders like phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria and hypermethioninemia respectively. Hence, studying aggregation behaviour of single amino acids is very crucial to assess the underlying molecular mechanism behind metabolic disorders. In this manuscript we report for the very first time the aggregation properties of non-aromatic single amino acids Hydroxy-proline and Proline. The morphologies of these were studied extensively by Optical microscopy (OM), ThT binding fluorescence microscopy, Scanning Electron Microscopy (SEM) and Atomic force microscopy (AFM). It can be assessed that these amino acids form globular structures at lower concentrations and gradually changes to tape like structures on increasing the This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1 Please do not adjust margins Please do not adjust margins Journal Name ARTICLE concentration as assessed by AFM. -
Transient Acquired Fanconi Syndrome with Unusual and Rare Aetiologies: a Case Study of Two Dogs
Veterinarni Medicina, 65, 2020 (01): 41–47 Case Report https://doi.org/10.17221/103/2019-VETMED Transient acquired Fanconi syndrome with unusual and rare aetiologies: A case study of two dogs Ju-Yong Park1, Ji-Hwan Park1, Hyun-Jung Han2, Jung-Hyun Kim3* 1Department of Veterinary Internal Medicine, Veterinary Medical Teaching Hospital, Konkuk University, Seoul, Republic of Korea 2Department of Veterinary Emergency, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea 3Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea *Corresponding author: [email protected] Ju-Yong Park and Ji-Hwan Park contributed equally to this work Citation: Park JY, Park JH, Han HJ, Kim JH (2020): Transient acquired Fanconi syndrome with unusual and rare aetiolo- gies: A case study of two dogs. Vet Med-Czech 65, 41–47. Abstract: The acquired form of Fanconi syndrome is seldom identified in dogs; those cases that have been reported have been secondary to hepatic copper toxicosis, primary hypoparathyroidism, ingestion of chicken jerky treats, exposure to ethylene glycol, or gentamicin toxicity. However, to the best of our knowledge, there have been no reports of acquired Fanconi syndrome secondary to Babesia infection or ingestion of cosmetics in dogs. We here report on two dogs presented with a history of marked polyuria, polydipsia, and lethargy. Laboratory examina- tions showed glucosuria with normoglycaemia and severe urinary loss of amino acids. One dog was infected with Babesia gibsoni and the other dog had a history of cosmetics ingestion. The first dog received treatment for Babesia infection and the second dog received aggressive care to correct metabolic acidosis, electrolyte imbalances, and other add-on deficiencies. -
Amino Acids (Urine)
Amino Acids (Urine) A profile of amino acids is provided: alanine, -amino butyric acid, arginine, asparagine, aspartic acid, carnosine, citrulline, cystine, glutamic acid, glutamine, glycine, histidine, homocystine, hydroxylysine, isoleucine, leucine, Description lysine, methionine, 1-methyl histidine, 3-methyl histidine, ornithine, phenylalanine, phosphoethanolamine, proline, sarcosine, serine, taurine, threonine, tyrosine, tryptophan, valine. In general, urine is useful when investigating a disorder of renal transport particularly with a positive urine nitroprusside test eg for cystinuria and homocystinuria, nephrolithiasis and or the Fanconi syndrome. Other Indication reasons maybe selective metabolic screening, hyperammonaemia, suspected aminoacidopathy, suspected disorder of energy metabolism, epileptic encephalopathy, control of protein restricted diet. Functions of amino acids include the basic structural units of proteins, metabolic intermediates and neurotransmission. Over 95% of the amino acid load filtered from the blood at the renal glomerulus is normally reabsorbed in the proximal Additional Info renal tubules by saturable transport systems. The term ‘aminoaciduria’ is used when more than 5% of the filtered load is detected in the urine. In normal individuals, aminoaciduria is transient and is associated with protein intake in excess of amino acid requirements. Concurrent Tests Plasma amino acids Dietary Requirements N/A Values depend on metabolic state. Cystinuria: Increased urinary cystine, lysine, arginine and ornithine. Interpretation Homocystinuria: Increased urinary homocysteine and methionine. Fanconi syndrome: Generalised increase in urinary amino acid excretion. Collection Conditions No restrictions. Repeat measurement inappropriate except in acute Frequency of testing presentation of undiagnosed suspected metabolic disorder. Version 1 Date: 25/01/11 Document agreed by: Dr NB Roberts . -
Disease Name Tyrosinemia Type III
Disease Name Tyrosinemia type III Alternate name(s) Hereditary infantile tyrosinemia, Hepatorenal tyrosinemia, Fumarylacetoacetase deficiency, Fumarylacetoacetate hydrolase FAH deficiency Acronym TYR-3 Disease Classification Amino Acid Disorder Variants Yes Variant name Tyrosinemia I chronic-type, Tyrosinemia II, Tyrosinemia III Symptom onset Infancy Symptoms Hepatocellular degeneration leading to acute hepatic failure or chronic cirrhosis and hepatocellular carcinoma, renal Fanconi syndrome, peripheral neuropathy, seizures and possible cardiomyopathy. Natural history without treatment Chronic liver disease leading to cirrhosis and hepatocellular carcinoma. Renal tubular disease (Fanconi syndrome) with phosphaturia, aminoaciduria and often glycosuria. May lead to clinical rickets. Peripheral neuropathy. Self- injurious behavior, seizures and cardiomyopathy have been observed. Coagulation problems. Natural history with treatment Hepatitic disease may progress despite dietary treatment. NTBC treatment leads to improvements in kidney, liver and neurologic function, but may not affect incidence of liver cancer. Treatment Dietary restriction of phenylalanine and tyrosine. NTBC (2-(2-nitro-4-trifluoro- methylbenzoyl)-1,3-cyclohexanedione) treatment which improves hepatic and renal function. Liver transplantation when indicated to prevent hepatocellular carcinoma. Vitamin D to heal rickets. Other Unpleasant odor due to accumulation of methionine. Sometimes described as “cabbage-like” odor. Physical phenotype No abnormalities present at birth. -
Cystinosis: Antibodies and Healthy Bodies
J Am Soc Nephrol 13: 2189–2191, 2002 Cystinosis: Antibodies and Healthy Bodies ROBERT KLETA AND WILLIAM A. GAHL Section on Human Biochemical Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland. Nephropathic cystinosis was first described in the early 1900s transplant cystinosis patients. At the same time, eyedrops con- in a 21-mo-old boy who died of progressive anorexia; two taining cysteamine (0.5%) were shown to dissolve the corneal siblings had previously died in infancy under similar circum- crystals, which cause a painful photophobia and occasional stances (1). By meticulous observations and analyses, it be- epithelial erosions (21-23). The crystals are pathognomic for came clear that abnormal cystine accumulation was character- cystinosis and can be identified by an experienced ophthalmol- istic of this autosomal recessive disease (2-4). Although some ogist as early as 1 yr of age (24). considered it to be a severe form of cystinuria, cystinosis was The era of molecular biology has brought with it an under- clearly distinguished from cystinuria by Bickel’s excellent standing of the genetic basis of cystinosis. In the mid 1990s, clinical and biochemical observations (5). Clinically, untreated the cystinosis gene was mapped to chromosome 17p (25); in cystinosis patients would suffer renal tubular Fanconi syn- 1998, the gene CTNS, coding for a lysosomal transport protein drome, with hypophosphatemic rickets, hypokalemia, polyuria, named cystinosin, was isolated (26). A 57,257-bp deletion (27) polydypsia, dehydration, acidosis, and growth retardation fol- was found to be responsible for approximately half of Northern lowed by end-stage renal disease (ESRD) and death at approx- European and North American cystinosis patients (26,28); this imately 10 yr of age (6,7). -
The PAH Gene, Phenylketonuria, and a Paradigm Shift
HUMAN MUTATION 28(9), 831^845, 2007 WILEY 200TH ANNIVERSARY TRIBUTE ARTICLE The PAH Gene, Phenylketonuria, and a Paradigm Shift Charles R. Scriver1–4Ã 1Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; 2Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; 3Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; 4Department of Biology, Faculty of Science, McGill University, Montreal, Quebec, Canada Communicated by Johannes Zschocke ‘‘Inborn errors of metabolism,’’ first recognized 100 years ago by Garrod, were seen as transforming evidence for chemical and biological individuality. Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype, was identified in 1934 by Asbjo¨rn Fo¨lling. It is a disease with impaired postnatal cognitive development resulting from a neurotoxic effect of hyperphenylalaninemia (HPA). Its metabolic phenotype is accountable to multifactorial origins both in nurture, where the normal nutritional experience introduces L-phenylalanine, and in nature, where mutations (4500 alleles) occur in the phenylalanine hydroxylase gene (PAH) on chromosome 12q23.2 encoding the L-phenylalanine hydroxylase enzyme (EC 1.14.16.1). The PAH enzyme converts phenylalanine to tyrosine in the presence of molecular oxygen and catalytic amounts of tetrahydrobiopterin (BH4), its nonprotein cofactor. PKU is among the first of the human genetic diseases to enter, through newborn screening, the domain of public health, and to show a treatment effect. This effect caused a paradigm shift in attitudes about genetic disease. The PKU story contains many messages, including: a framework on which to appreciate the complexity of PKU in which phenotype reflects both locus-specific and genomic components; what the human PAH gene tells us about human population genetics and evolution of modern humans; and how our interest in PKU is served by a locus-specific mutation database (http://www.pahdb.mcgill.ca; last accessed 20 March 2007). -
Adult Complications of Nephropathic Cystinosis: a Systematic Review
Pediatric Nephrology https://doi.org/10.1007/s00467-020-04487-6 REVIEW Adult complications of nephropathic cystinosis: a systematic review Rachel Nora Kasimer1 & Craig B Langman1 Received: 25 November 2019 /Revised: 18 January 2020 /Accepted: 20 January 2020 # IPNA 2020 Abstract While nephropathic cystinosis is classically thought of as a childhood disease, with improved treatments, patients are more commonly living into adulthood. We performed a systematic review of the literature available on what complications this population faces as it ages. Nearly every organ system is affected in cystinosis, either from the disease itself or from sequelae of kidney transplantation. While cysteamine is known to delay the onset of end-stage kidney disease, its effects on other complications of cystinosis are less well determined. More common adult-onset complications include myopathy, diabetes, and hypothyroidism. Some less common complications, such as neurologic dysfunction, can still have a profound impact on those with cystinosis. Areas for further research in this area include additional study of the impact of cysteamine on the nonrenal manifestations of cystinosis, as well as possible avenues for new and novel treatments. Keywords Cystinosis . Adult complications . Chronic kidney disease . Fanconi syndrome . Cardiovascular disease . Endocrinopathies Introduction live well into the adult years if treated early after diagnosis with a cystine-depleting agent. Since the outlook for living Nephropathic cystinosis (OMIM #219800 and 219900) is a into adulthood is now more a reality than ever before, we rare autosomal recessive disorder due to one of over a hundred undertook a systematic review to ascertain what is known known mutations in the lysosomal cystine transporter, about adult complications, and to set the stage for future cystinosin, and is the most frequent cause of an inherited renal studies. -
Molecular Patterns Behind Immunological and Metabolic Alterations in Lysinuric Protein Intolerance
MOLECULAR PATTERNS BEHIND IMMUNOLOGICAL AND METABOLIC ALTERATIONS IN LYSINURIC PROTEIN INTOLERANCE Johanna Kurko TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1220 | Medica - Odontologica | Turku 2016 University of Turku Faculty of Medicine Institute of Biomedicine Department of Medical Biochemistry and Genetics Turku Doctoral Programme of Molecular Medicine (TuDMM) Supervised by Adjunct Professor Juha Mykkänen, Ph.D Professor Harri Niinikoski, MD, Ph.D Research Centre of Applied and Department of Paediatrics and Preventive Cardiovascular Medicine Adolescent Medicine University of Turku Turku University Hospital Turku, Finland University of Turku Turku, Finland Reviewed by Adjunct Professor Risto Lapatto, MD, Ph.D Adjunct Professor Outi Monni, Ph.D Department of Paediatrics Research Programs’ Unit and Institute of Helsinki University Hospital Biomedicine University of Helsinki University of Helsinki Helsinki, Finland Helsinki, Finland Opponent Adjunct Professor Päivi Saavalainen, Ph.D Research Programs Unit University of Helsinki Helsinki, Finland The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-6399-7 (PRINT) ISBN 978-951-29-6400-0 (PDF) ISSN 0355-9483 (PRINT) ISSN 2343-3213 (ONLINE) Painosalama Oy - Turku, Finland 2016 ‘Nothing has such power to broaden the mind as the ability to investigate systematically and truly all that comes under thy observation in life.’ Marcus -
Non-Cystinotic Fanconi Syndrome
ERKNet Non-cystinotic Fanconi syndrome Francesco Emma Division of Nephrology and Dialysis Bambino Gesù Children’s Hospital, IRCCS - Rome, Italy De Toni – Debre - Fanconi Syndrome . Fanconi G. Die nicht diabetischen Glykosurien und Hyperglykaemien des aelteren Kindes. Renal glycosuria Jahrbuch fuer Kinderheilkunde 1931; 133: 257–300 . de Toni G. Remarks on the relationship between renal rickets (renal dwarfism) and renal diabetes. Acta Rickets & glycosuria Pediatrica 1933; 16: 479–484 . Debre R, Marie J, Cleret F et Messimy R. Rachitisme tardif coexistant avec une Nephrite chronique et une Glycosurie. Archive de Medicine des Enfants 1934; 37: Rickets & glycosuria & nephropathy 597–606 . Fanconi G. Der nephrotisch-glykosurische Zwergwuchs mit hypophosphataemischer Rachitis. Deutsche Rickets & glycosuria & nephropathy Medizinische Wochenschrift 1936; 62: 1169–1171 Proximal tubular cell and Fanconi syndrome Isolated baso-lateral transporter defects Isolated apical Possible Fanconi sd transporter defects Rarely Fanconi sd Energy depletion / metabolic failure Frequent Fanconi sd Mutations of transcription factors Rarely Fanconi sd Impaired receptor-mediated endocytosis - receptor mutations no / mild Fanconi sd - intracellular trafficking defects frequent Fanconi sd Genetic forms of Fanconi Syndrome MEMBRANE TRANSPORTERS RECEPTOR-MEDIATED METABOLIC DISEASES TRANSCRIPTION FACTORS ENDOCYTOSIS . Galactosemia . Fanconi-Bickel . Imerslund-Gräsbeck syndrome (GALT) cataract, liver disease, (GLUT2) hypoglycemia, liver disease, (CUB, AMN) vomiting, diarrhea, -
Lowe Syndrome: Report of a Case and Brief Literature Review
Iran J Pediatr Case Report Dec 2009; Vol 19 (No 4), Pp:417-420 Lowe Syndrome: Report of a Case and Brief Literature Review Gholamhossein Amirhakimi*, MD; Mohamad-Hosein Fallahzadeh, MD; Hedyeh Saneifard, MD Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, IR Iran Received: Jul 20, 2008; Final Revision: Jun 03, 2009; Accepted: May 01, 2009 Abstract Background: The oculocerebrorenal syndrome of Lowe (OCRL) is a rare x-linked recessive disorder first described in 1952. This syndrome is characterized by ocular involvement, mental retardation and kidney disease. The causative gene is OCRL1. Survival rarely exceeds 40 years. Case Presentation: A 13-year-old boy was referred because of short stature. In physical examination his height was 108.2 cm. He had poor growth, psychomotor retardation, severe hypotonia, congenital cataract which was operated on earlier in life, searching nystagmus, anti social behavior and used foul language. He had been on treatment for renal tubular acidosis (Fanconi syndrome) since 8 month of age. Conclusion: The possibility of OCRL should be considered in boys with cataracts and glumerolar disease. As the condition can be diagnosed in first months of life, early treatment can prevent patients from various complications. Iranian Journal of Pediatrics, Volume 19 (Number 4), December 2009, Pages: 417-420 Key Words: Cataract; Hypotonia; Renal tubular acidosis; Mental retardation; Short stature; Oculocerebrorenal syndrome Introduction The prevalence of this syndrome has been estimated to occur in 1 out of 500000 The oculocerebrorenal syndrome of Lowe individuals [3]. OCRL results from a mutation in (OCRL) also referred as the Lowe syndrome is a the oculocerebrorenal gene (OCRL1) being rare disorder distinguished by a triad of organ localized on Xq24-26.1 that encode a protein system abnormalities, namely ocular disease highly homologous to inositol polyphosphate 5- such as neonatal onset cataracts, mental phosphatase.