Amino Acids (Urine)

Total Page:16

File Type:pdf, Size:1020Kb

Amino Acids (Urine) Amino Acids (Urine) A profile of amino acids is provided: alanine, -amino butyric acid, arginine, asparagine, aspartic acid, carnosine, citrulline, cystine, glutamic acid, glutamine, glycine, histidine, homocystine, hydroxylysine, isoleucine, leucine, Description lysine, methionine, 1-methyl histidine, 3-methyl histidine, ornithine, phenylalanine, phosphoethanolamine, proline, sarcosine, serine, taurine, threonine, tyrosine, tryptophan, valine. In general, urine is useful when investigating a disorder of renal transport particularly with a positive urine nitroprusside test eg for cystinuria and homocystinuria, nephrolithiasis and or the Fanconi syndrome. Other Indication reasons maybe selective metabolic screening, hyperammonaemia, suspected aminoacidopathy, suspected disorder of energy metabolism, epileptic encephalopathy, control of protein restricted diet. Functions of amino acids include the basic structural units of proteins, metabolic intermediates and neurotransmission. Over 95% of the amino acid load filtered from the blood at the renal glomerulus is normally reabsorbed in the proximal Additional Info renal tubules by saturable transport systems. The term ‘aminoaciduria’ is used when more than 5% of the filtered load is detected in the urine. In normal individuals, aminoaciduria is transient and is associated with protein intake in excess of amino acid requirements. Concurrent Tests Plasma amino acids Dietary Requirements N/A Values depend on metabolic state. Cystinuria: Increased urinary cystine, lysine, arginine and ornithine. Interpretation Homocystinuria: Increased urinary homocysteine and methionine. Fanconi syndrome: Generalised increase in urinary amino acid excretion. Collection Conditions No restrictions. Repeat measurement inappropriate except in acute Frequency of testing presentation of undiagnosed suspected metabolic disorder. Version 1 Date: 25/01/11 Document agreed by: Dr NB Roberts .
Recommended publications
  • Leading Article the Molecular and Genetic Base of Congenital Transport
    Gut 2000;46:585–587 585 Gut: first published as 10.1136/gut.46.5.585 on 1 May 2000. Downloaded from Leading article The molecular and genetic base of congenital transport defects In the past 10 years, several monogenetic abnormalities Given the size of SGLT1 mRNA (2.3 kb), the gene is large, have been identified in families with congenital intestinal with 15 exons, and the introns range between 3 and 2.2 kb. transport defects. Wright and colleagues12 described the A single base change was identified in the entire coding first, which concerns congenital glucose and galactose region of one child, a finding that was confirmed in the malabsorption. Subsequently, altered genes were identified other aZicted sister. This was a homozygous guanine to in partial or total loss of nutrient absorption, including adenine base change at position 92. The patient’s parents cystinuria, lysinuric protein intolerance, Menkes’ disease were heterozygotes for this mutation. In addition, it was (copper malabsorption), bile salt malabsorption, certain found that the 92 mutation was associated with inhibition forms of lipid malabsorption, and congenital chloride diar- of sugar transport by the protein. Since the first familial rhoea. Altered genes may also result in decreased secretion study, genomic DNA has been screened in 31 symptomatic (for chloride in cystic fibrosis) or increased absorption (for GGM patients in 27 kindred from diVerent parts of the sodium in Liddle’s syndrome or copper in Wilson’s world. In all 33 cases the mutation produced truncated or disease)—for general review see Scriver and colleagues,3 mutant proteins.
    [Show full text]
  • Novel Insights Into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria Schumann, Anke Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-148531 Dissertation Published Version Originally published at: Schumann, Anke. Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria. 2017, University of Zurich, Faculty of Medicine. Novel Insights into the Pathophysiology of Kidney Disease in Methylmalonic Aciduria Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anke Schumann aus Deutschland Promotionskommission Prof. Dr. Olivier Devuyst (Vorsitz und Leitung der Dissertation) Prof. Dr. Matthias R. Baumgartner Prof. Dr. Stefan Kölker Zürich, 2017 DECLARATION I hereby declare that the presented work and results are the product of my own work. Contributions of others or sources used for explanations are acknowledged and cited as such. This work was carried out in Zurich under the supervision of Prof. Dr. O. Devuyst and Prof. Dr. M.R. Baumgartner from August 2012 to August 2016. Peer-reviewed publications presented in this work: Haarmann A, Mayr M, Kölker S, Baumgartner ER, Schnierda J, Hopfer H, Devuyst O, Baumgartner MR. Renal involvement in a patient with cobalamin A type (cblA) methylmalonic aciduria: a 42-year follow-up. Mol Genet Metab. 2013 Dec;110(4):472-6. doi: 10.1016/j.ymgme.2013.08.021. Epub 2013 Sep 17. Schumann A, Luciani A, Berquez M, Tokonami N, Debaix H, Forny P, Kölker S, Diomedi Camassei F, CB, MK, Faresse N, Hall A, Ziegler U, Baumgartner M and Devuyst O.
    [Show full text]
  • Transient Acquired Fanconi Syndrome with Unusual and Rare Aetiologies: a Case Study of Two Dogs
    Veterinarni Medicina, 65, 2020 (01): 41–47 Case Report https://doi.org/10.17221/103/2019-VETMED Transient acquired Fanconi syndrome with unusual and rare aetiologies: A case study of two dogs Ju-Yong Park1, Ji-Hwan Park1, Hyun-Jung Han2, Jung-Hyun Kim3* 1Department of Veterinary Internal Medicine, Veterinary Medical Teaching Hospital, Konkuk University, Seoul, Republic of Korea 2Department of Veterinary Emergency, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea 3Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea *Corresponding author: [email protected] Ju-Yong Park and Ji-Hwan Park contributed equally to this work Citation: Park JY, Park JH, Han HJ, Kim JH (2020): Transient acquired Fanconi syndrome with unusual and rare aetiolo- gies: A case study of two dogs. Vet Med-Czech 65, 41–47. Abstract: The acquired form of Fanconi syndrome is seldom identified in dogs; those cases that have been reported have been secondary to hepatic copper toxicosis, primary hypoparathyroidism, ingestion of chicken jerky treats, exposure to ethylene glycol, or gentamicin toxicity. However, to the best of our knowledge, there have been no reports of acquired Fanconi syndrome secondary to Babesia infection or ingestion of cosmetics in dogs. We here report on two dogs presented with a history of marked polyuria, polydipsia, and lethargy. Laboratory examina- tions showed glucosuria with normoglycaemia and severe urinary loss of amino acids. One dog was infected with Babesia gibsoni and the other dog had a history of cosmetics ingestion. The first dog received treatment for Babesia infection and the second dog received aggressive care to correct metabolic acidosis, electrolyte imbalances, and other add-on deficiencies.
    [Show full text]
  • Original Article Prevalence of Aminoacidurias in a Tertiary Care Pediatric Medical College Hospital J
    DOI: 10.14260/jemds/2015/650 ORIGINAL ARTICLE PREVALENCE OF AMINOACIDURIAS IN A TERTIARY CARE PEDIATRIC MEDICAL COLLEGE HOSPITAL J. N. George1, A. Amaresh2, N. J. Gokula Kumari3 HOW TO CITE THIS ARTICLE: J. N. George, A. Amaresh, N. J. Gokula Kumari. “Prevalence of Aminoacidurias in a Tertiary Care Pediatric Medical College Hospital”. Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 26, March 30; Page: 4500-4508, DOI: 10.14260/jemds/2015/650 ABSTRACT: BACKGROUND: Inborn errors of metabolism (IEM) comprises of a diverse group of heterogeneous disorders manifesting in paediatric population. Cases of Inborn errors of metabolism, individually are rare but collectively are common. The timing of presentation depends on significant accumulation of toxic metabolites or on the deficiency of substrate. These disorders manifest by subtle neurologic or psychiatric features often go undiagnosed until adulthood. OBJECTIVES: The objectives of the present study was to carry out preliminary screening on urine samples from pediatric population with either metabolic or neurological manifestations for inborn errors of metabolism and to know the prevalence of aminoaciduria in tertiary care setup for early diagnosis and detection. METHODS: The present study is a cross sectional time bound study carried out at Niloufer Institute of Child Health, Osmania Medical College, Hyderabad, from August 2013 to July 2014. A total of 119 samples were analyzed from suspected cases of IEM. Samples were analyzed for all physical and chemical parameters and positive cases reported by these investigations were referred for confirmation by TMS, HPLC, and GCMS. RESULTS: Among 119 children analyzed, 29 were given presumptive diagnosis of IEM based on screening tests, urinary aminoacidogram by TLC and clinical correlation.
    [Show full text]
  • Pathological Findings in Homocystinuria
    J Clin Pathol: first published as 10.1136/jcp.17.4.427 on 1 July 1964. Downloaded from J. clin. Path. (1964), 17, 427 Pathological findings in homocystinuria J. B. GIBSON', NINA A. J. CARSON, AND D. W. NEILL2 From the Departments ofPathology and of Child Health, and the Biochemistry Laboratory, The Queen's University of Belfast, and Royal Belfast Hospitalfor Sick Children, and Royal Victoria Hospital, Belfast SYNOPSIS Pathological findings are described in four cases of a new aminoaciduria in which homocystine is excreted in the urine. All the patients were mentally retarded children. Three of them presented diagnostic features of Marfan's syndrome. Necropsy on one case and biopsy findings in the others are described. Fatty change occurs in the liver. The most striking lesions are vascular. Metachromatic medial degeneration of the aorta and of the elastic arteries in the necropsied case are considered in relation to Marfan's syndrome. Other changes, particularly thrombosis which is prevalent in homocystinuria, suggest the possibility of a platelet defect. The findings are discussed in respect of an upset in the metabolism of sulphur-containing amino-acids and with particular reference to Marfan's syndrome. A systematic search for metabolic abnormalities in Their appearance was that of Marfan's syndrome mentally retarded individuals in Northern Ireland and in fact two of them had been designated pre- revealed a hitherto unrecognized specific amino- viously as classical examples of Marfan's syndrome aciduria, in which the sulphur-containing amino- in published studies of that condition (case A4, acid homocystine is excreted (Carson and Neill, Lynas, 1958; case 4, Loughridge, 1959).
    [Show full text]
  • A New Inborn Error of Metabolism Associated with Mental Deficiency
    Arch Dis Child: first published as 10.1136/adc.38.201.425 on 1 October 1963. Downloaded from Arch. Dis. Childl., 1963, 38, 425. HOMOCYSTINURIA: A NEW INBORN ERROR OF METABOLISM ASSOCIATED WITH MENTAL DEFICIENCY BY NINA A. J. CARSON*, D. C. CUSWORTHt, C. E. DENTt, C. M. B. FIELD+, D. W. NEILL§ and R. G. WESTALLt From Royal Belfast Hospital for Sick Children, University College Hospital Medical School, London, Belfast City Hospital, and Royal Victoria Hospital, Belfast (RECEIVED FOR PUBLICATION MARCH 20, 1963) It is now becoming generally noted that many imagine that sooner or later similar metabolic diseases of hitherto unknown aetiology are due to disorders will be discovered that will involve the inborn errors of metabolism in the sense in which remaining amino acids. Garrod (1923) used this term. Although these The present study concerns a further presumed diseases cover the whole of medicine it has been inborn error of amino acid metabolism, this time particularly gratifying to note that mental disease, involving the sulphur-containing compound homo- especially mental deficiency which currently is cystine. The discovery arose from the submission responsible for one of our main medical problems, by one of us (C.M.B.F.) of urine from two mentally has been especially involved in these recent dis- retarded sibs whose clinical features were thought coveries. In particular, a number of inborn errors to suggest a possible metabolic basis. The urine of metabolism causing mental disease have been was sent for examination to others of us (N.A.J.C. described recently in which the disorder concerned and D.W.N.) who were currently running a meta- copyright.
    [Show full text]
  • Laboratory Diagnostic Approaches in Metabolic Disorders
    470 Review Article on Inborn Errors of Metabolism Page 1 of 14 Laboratory diagnostic approaches in metabolic disorders Ruben Bonilla Guerrero1, Denise Salazar2, Pranoot Tanpaiboon2,3 1Formerly Quest Diagnostics, Inc., Ruben Bonilla Guerrero, Rancho Santa Margarita, CA, USA; 2Quest Diagnostics, Inc., Denise Salazar and Pranoot Tanpaiboon, San Juan Capistrano, CA, USA; 3Genetics and Metabolism, Children’s National Rare Disease Institute, Washington, DC, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: R Bonilla Guerrero; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Ruben Bonilla Guerrero. Formerly Quest Diagnostics, Inc., Ruben Bonilla Guerrero, 508 Sable, Rancho Santa Margarita, CA 92688, USA. Email: [email protected]. Abstract: The diagnosis of inborn errors of metabolism (IEM) takes many forms. Due to the implementation and advances in newborn screening (NBS), the diagnosis of many IEM has become relatively easy utilizing laboratory biomarkers. For the majority of IEM, early diagnosis prevents the onset of severe clinical symptoms, thus reducing morbidity and mortality. However, due to molecular, biochemical, and clinical variability of IEM, not all disorders included in NBS programs will be detected and diagnosed by screening alone. This article provides a general overview and simplified guidelines for the diagnosis of IEM in patients with and without an acute metabolic decompensation, with early or late onset of clinical symptoms. The proper use of routine laboratory results in the initial patient assessment is also discussed, which can help guide efficient ordering of specialized laboratory tests to confirm a potential diagnosis and initiate treatment as soon as possible.
    [Show full text]
  • Practitioner's Manual
    Hawai`i Practitioner’s Manual Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual The Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Hawai`i Department of Health Gwen Palmer, RN Janice Y. Kong, MT Oregon Health & Science University Cary Harding, MD Stephen L. LaFranchi, MD Gregory Thomas, MD Michael Wall, MD Oregon Health Authority Public Health Michael R. Skeels, PhD, MPH Cheryl A. Hermerath, MBA, DLM (ASCP), RM (NRM) Lindsey Caudle, RN, BSN Becky J. Whittemore, MN, MPH, FNP 9th Edition, 2011 ii Northwest Regional Newborn Screening Program Hawai`i Practitioner’s Manual Table of contents Hawai`i medical program and follow-up team . 1 Medical program consultants . 2. Oregon State Public Health Laboratory and follow-up team . 3. Introduction . 4. Newborn screening essentials . 6. Conditions included in the screening panel . 7. Table I: Summary of conditions on the screening panel . .8 Table II: Normal values and criteria for requesting follow-up specimens . 11 Screening practices . 13 Definition . 13. Who is responsible for ensuring that the screening test is performed? . 13. Parent refusal to have the infant screened . 13. Screening before discharge . 13. Proper time for specimen collection . 13. Table III - Validity of 1st and 2nd NBS tests........................................ 13 Table IV - Age of infant at specimen collection*................................... 14 Diagnostic laboratories for screening older children and/or adults . 15. Specimen collection before transfer of infant to another facility . 15. Patient demographic information . 15. Specimen transport . 15. Newborn screening for preterm, low birth weight or sick infants . 16 Table V: Maternal conditions affecting the newborn screening results ............... 16 Table VI: Treatments used in special care baby unit and effects on newborn screening results ...................................................
    [Show full text]
  • Disease Name Tyrosinemia Type III
    Disease Name Tyrosinemia type III Alternate name(s) Hereditary infantile tyrosinemia, Hepatorenal tyrosinemia, Fumarylacetoacetase deficiency, Fumarylacetoacetate hydrolase FAH deficiency Acronym TYR-3 Disease Classification Amino Acid Disorder Variants Yes Variant name Tyrosinemia I chronic-type, Tyrosinemia II, Tyrosinemia III Symptom onset Infancy Symptoms Hepatocellular degeneration leading to acute hepatic failure or chronic cirrhosis and hepatocellular carcinoma, renal Fanconi syndrome, peripheral neuropathy, seizures and possible cardiomyopathy. Natural history without treatment Chronic liver disease leading to cirrhosis and hepatocellular carcinoma. Renal tubular disease (Fanconi syndrome) with phosphaturia, aminoaciduria and often glycosuria. May lead to clinical rickets. Peripheral neuropathy. Self- injurious behavior, seizures and cardiomyopathy have been observed. Coagulation problems. Natural history with treatment Hepatitic disease may progress despite dietary treatment. NTBC treatment leads to improvements in kidney, liver and neurologic function, but may not affect incidence of liver cancer. Treatment Dietary restriction of phenylalanine and tyrosine. NTBC (2-(2-nitro-4-trifluoro- methylbenzoyl)-1,3-cyclohexanedione) treatment which improves hepatic and renal function. Liver transplantation when indicated to prevent hepatocellular carcinoma. Vitamin D to heal rickets. Other Unpleasant odor due to accumulation of methionine. Sometimes described as “cabbage-like” odor. Physical phenotype No abnormalities present at birth.
    [Show full text]
  • ACVIM Giger Cyst+Fanconi 2014F
    UPDATES ON CYSTINURIA AND FANCONI SYNDROME: AMINO ACIDURIAS IN DOGS Urs Giger, DACVIM-SA, DECVIM CA, DECVCP, Ann-Kathrin Brons, Caitlin A Fitzgerald, Jeffrey Slutsky, Karthik Raj, Victor Stora, Adrian C Sewell and Paula S Henthorn Philadelphia, PA Introduction Disorders of the renal proximal tubules can cause selective or generalized aminoaciduria and may be associated with urinary losses of other solutes such as glucose, lactate, electrolytes and bicarbonate. Two renal tubular defects involving amino acids have long been recognized in dogs, namely cystinuria, leading to cystine calculi and urinary obstruction, and Fanconi syndrome, progressing to renal failure if untreated. Both hereditary disorders have been investigated at the molecular level and are more complex than originally anticipated. Furthermore, the ingestion of Chinese jerky treats has recently been found to be associated with Fanconi syndrome in many dogs and rarely cats. The current understanding of pathophysiology, clinicopathological findings, diagnosis, and therapeutic options will be presented. Fanconi Syndrome Fanconi syndrome, named after the Swiss pediatrician Guido Fanconi and also known as Fanconi’s syndrome or Fanconi disease, should not be confused with Fanconi anemia, a bone marrow disorder in humans. Fanconi syndrome represents a majorproximal renal tubular defect, which hampers the adequate reabsorption of glucose, amino acids, bicarbonate, sodium, calcium, phosphate, lactate, ketones, and carnitine. This rather general loss of multiple functions of the proximal renal tubules can be associated with renal tubular acidosis and lead to progressive renal failure if left untreated. In the renal tubules there are multiple co- transporters for sodium and glucose, amino acids, calcium, and inorganic phosphorus and a sodium/hydrogen ion antiporter, which, depending upon the concentration gradient established by the sodium-potassium pump, move hydrogen ions into the urine.
    [Show full text]
  • Adult Complications of Nephropathic Cystinosis: a Systematic Review
    Pediatric Nephrology https://doi.org/10.1007/s00467-020-04487-6 REVIEW Adult complications of nephropathic cystinosis: a systematic review Rachel Nora Kasimer1 & Craig B Langman1 Received: 25 November 2019 /Revised: 18 January 2020 /Accepted: 20 January 2020 # IPNA 2020 Abstract While nephropathic cystinosis is classically thought of as a childhood disease, with improved treatments, patients are more commonly living into adulthood. We performed a systematic review of the literature available on what complications this population faces as it ages. Nearly every organ system is affected in cystinosis, either from the disease itself or from sequelae of kidney transplantation. While cysteamine is known to delay the onset of end-stage kidney disease, its effects on other complications of cystinosis are less well determined. More common adult-onset complications include myopathy, diabetes, and hypothyroidism. Some less common complications, such as neurologic dysfunction, can still have a profound impact on those with cystinosis. Areas for further research in this area include additional study of the impact of cysteamine on the nonrenal manifestations of cystinosis, as well as possible avenues for new and novel treatments. Keywords Cystinosis . Adult complications . Chronic kidney disease . Fanconi syndrome . Cardiovascular disease . Endocrinopathies Introduction live well into the adult years if treated early after diagnosis with a cystine-depleting agent. Since the outlook for living Nephropathic cystinosis (OMIM #219800 and 219900) is a into adulthood is now more a reality than ever before, we rare autosomal recessive disorder due to one of over a hundred undertook a systematic review to ascertain what is known known mutations in the lysosomal cystine transporter, about adult complications, and to set the stage for future cystinosin, and is the most frequent cause of an inherited renal studies.
    [Show full text]
  • Molecular Patterns Behind Immunological and Metabolic Alterations in Lysinuric Protein Intolerance
    MOLECULAR PATTERNS BEHIND IMMUNOLOGICAL AND METABOLIC ALTERATIONS IN LYSINURIC PROTEIN INTOLERANCE Johanna Kurko TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1220 | Medica - Odontologica | Turku 2016 University of Turku Faculty of Medicine Institute of Biomedicine Department of Medical Biochemistry and Genetics Turku Doctoral Programme of Molecular Medicine (TuDMM) Supervised by Adjunct Professor Juha Mykkänen, Ph.D Professor Harri Niinikoski, MD, Ph.D Research Centre of Applied and Department of Paediatrics and Preventive Cardiovascular Medicine Adolescent Medicine University of Turku Turku University Hospital Turku, Finland University of Turku Turku, Finland Reviewed by Adjunct Professor Risto Lapatto, MD, Ph.D Adjunct Professor Outi Monni, Ph.D Department of Paediatrics Research Programs’ Unit and Institute of Helsinki University Hospital Biomedicine University of Helsinki University of Helsinki Helsinki, Finland Helsinki, Finland Opponent Adjunct Professor Päivi Saavalainen, Ph.D Research Programs Unit University of Helsinki Helsinki, Finland The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-6399-7 (PRINT) ISBN 978-951-29-6400-0 (PDF) ISSN 0355-9483 (PRINT) ISSN 2343-3213 (ONLINE) Painosalama Oy - Turku, Finland 2016 ‘Nothing has such power to broaden the mind as the ability to investigate systematically and truly all that comes under thy observation in life.’ Marcus
    [Show full text]