Nernst Equation - Wikipedia 1 of 10
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nernst Equation in Electrochemistry the Nernst Equation Gives the Reduction Potential of a Half‐Cell in Equilibrium
Nernst equation In electrochemistry the Nernst equation gives the reduction potential of a half‐cell in equilibrium. In further cases, it can also be used to determine the emf (electromotive force) for a full electrochemical cell. (half‐cell reduction potential) (total cell potential) where Ered is the half‐cell reduction potential at a certain T o E red is the standard half‐cell reduction potential Ecell is the cell potential (electromotive force) o E cell is the standard cell potential at a certain T R is the universal gas constant: R = 8.314472(15) JK−1mol−1 T is the absolute temperature in Kelvin a is the chemical activity for the relevant species, where aRed is the reductant and aOx is the oxidant F is the Faraday constant; F = 9.64853399(24)×104 Cmol−1 z is the number of electrons transferred in the cell reaction or half‐reaction Q is the reaction quotient (e.g. molar concentrations, partial pressures …) As the system is considered not to have reached equilibrium, the reaction quotient Q is used instead of the equilibrium constant k. The electrochemical series is used to determine the electrochemical potential or the electrode potential of an electrochemical cell. These electrode potentials are measured relatively to the standard hydrogen electrode. A reduced member of a couple has a thermodynamic tendency to reduce the oxidized member of any couple that lies above it in the series. The standard hydrogen electrode is a redox electrode which forms the basis of the thermodynamic scale of these oxidation‐ reduction potentials. For a comparison with all other electrode reactions, standard electrode potential E0 of hydrogen is defined to be zero at all temperatures. -
A Thermodynamic Description for Physiological Transmembrane Transport
A thermodynamic description for physiological transmembrane transport Marco Arieli Herrera-Valdez 1 1 Facultad de Ciencias, Universidad Nacional Autónoma de México marcoh@ciencias:unam:mx April 16, 2018 Abstract Physiological mechanisms for passive and active transmembrane transport have been theoretically described using many different approaches. A generic formulation for both passive and active transmem- brane transport, is derived from basic thermodynamical principles taking into account macroscopic forward and backward molecular fluxes, relative to a source compartment, respectively. Electrogenic fluxes also depend on the transmembrane potential and can be readily converted into currents. Interestingly, the conductance-based formulation for current is the linear approximation of the generic formulation for current, around the reversal potential. Also, other known formulas for current based on electrodiffusion turn out to be particular examples of the generic formulation. The applicability of the generic formulations is illustrated with models of transmembrane potential dynamics for cardiocytes and neurons. The generic formulations presented here provide a common ground for the biophysical study of physiological phenomena that depend on transmembrane transport. 1 Introduction One of the most important physiological mechanisms underlying communication within and between cells is the transport of molecules across membranes. Molecules can cross membranes either passively (Stein and Litman, 2014), or via active transport (Bennett, 1956). Passive transmembrane transport occurs through pores that may be spontaneously formed within the lipid bilayer (Blicher and Heimburg, 2013), or within transmembrane proteins called channels (Hille, 1992; Stein and Litman, 2014) that may be selective for particular ion types (Almers and McCleskey, 1984; Doyle et al., 1998; Favre et al., 1996). -
Units of Free Energy and Electrochemical Cell Potentials Notes on General Chemistry
Units of free energy and electrochemical cell potentials Notes on General Chemistry http://quantum.bu.edu/notes/GeneralChemistry/FreeEnergyUnits.pdf Last updated Wednesday, March 15, 2006 9:45:57-05:00 Copyright © 2006 Dan Dill ([email protected]) Department of Chemistry, Boston University, Boston MA 02215 "The devil is in the details." Units of DG for chemical transformations There is a subtlety about the relation between DG and K, namely how DG changes when the amounts of reactants and products change. Gibbs free energy G = H - TS is an extensive quantity, that is, it depends on how much of the system we have, since H and S are both extensive (T is intensive). This means if we double the reactants and products, 2 a A V 2 b B then DG must also double, but the expression DG = RTln Q K found in textbooks does not seem to contain the amounts of reactants and products! In fact it does contain these, because theH êstoichiometricL coefficients appear as exponents in Q and K. Thereby, doubling the moles of reactants and products will change Q and K into their square, which will double DG. Here is how. DG doubled = RTln Q2 K2 = RTln Q K 2 H = 2LRTln Q K H ê L = 2 DG original H ê L This result evidently means thatH ê L H L the units of DG are energy, not energy per mole, but with the understanding that it is the change in Gibbs free energy per mole of reaction as written. The question arises, why is this not taken account by the explicit units in the equation for DG? The answer is that the appropriate unit has been omitted. -
9.01 Introduction to Neuroscience Fall 2007
MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02) RECITATION #2: Tuesday, September 18th Review of Lectures: 3, 4 Reading: Chapters 3, 4 or Neuroscience: Exploring the Brain (3rd edition) Outline of Recitation: I. Previous Recitation: a. Questions on practice exam questions from last recitation? II. Review of Material: a. Exploiting Axoplasmic Transport b. Types of Glia c. THE RESTING MEMBRANE POTENTIAL d. THE ACTION POTENTIAL III. Practice Exam Questions IV. Questions on Pset? Exploiting Axoplasmic Transport: Maps connections of the brain Rates of transport: - slow: - fast: Examples: Uses anterograde transport: - Uses retrograde transport: - - - Types of Glia: - Microglia: - Astrocytes: - Myelinating Glia: 1 THE RESTING MEMBRANE POTENTIAL: The Cast of Chemicals: The Movement of Ions: Influences by two factors: (1) Diffusion: (2) Electricity: Ohm’s Law: I = gV Ionic Equilibrium Potentials (EION): + Example: ENs * diffusional and electrical forces are equal 2 Nernst Equation: EION = 2.303 RT/zF log [ion]0/[ion]i Calculates equilibrium potential for a SINGLE ion. Inside Outside EION (at 37°C) + [K ] + [Na ] 2+ [Ca ] [Cl ] *Pumps maintain concentration gradients (ex. sodiumpotassium pump; calcium pump) Resting Membrane Potential (VM at rest): Measured resting membrane potential: 65 mV Goldman Equation: + + + + VM = 61.54 mV log (PK[K ]o + PNa[Na ]o)/ (PK[K ]I + PNa[Na ]i) + + Calculates membrane potential when permeable to both Na and K . Remember: at REST, gK >>> gNa therefore, VM is closer to EK THE ACTION POTENTIAL (Nerve Impulse): Phases of an Action Potential: Vm (mV) ENa 0 EK Time 3 Conductance of Ion Channels during AP: Remember: Changes in conductance, or permeability of the membrane to a specific ion, changes the membrane potential. -
Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1998 Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C Richard Kettler University of Nebraska-Lincoln, [email protected] David J. Wesolowski Oak Ridge National Laboratory Donald A. Palmer Oak Ridge National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Kettler, Richard; Wesolowski, David J.; and Palmer, Donald A., "Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C" (1998). Papers in the Earth and Atmospheric Sciences. 135. https://digitalcommons.unl.edu/geosciencefacpub/135 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Chem. Eng. Data 1998, 43, 337-350 337 Dissociation Constants of Oxalic Acid in Aqueous Sodium Chloride and Sodium Trifluoromethanesulfonate Media to 175 °C Richard M. Kettler*,† Department of Geology, University of Nebraska, Lincoln, Nebraska 68588-0340 David J. Wesolowski‡ and Donald A. Palmer§ Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 The first and second molal dissociation constants of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. -
Ch.14-16 Electrochemistry Redox Reaction
Redox Reaction - the basics ox + red <=> red + ox Ch.14-16 1 2 1 2 Oxidizing Reducing Electrochemistry Agent Agent Redox reactions: involve transfer of electrons from one species to another. Oxidizing agent (oxidant): takes electrons Reducing agent (reductant): gives electrons Redox Reaction - the basics Balance Redox Reactions (Half Reactions) Reduced Oxidized 1. Write down the (two half) reactions. ox1 + red2 <=> red1 + ox2 2. Balance the (half) reactions (Mass and Charge): a. Start with elements other than H and O. Oxidizing Reducing Agent Agent b. Balance O by adding water. c. balance H by adding H+. Redox reactions: involve transfer of electrons from one d. Balancing charge by adding electrons. species to another. (3. Multiply each half reaction to make the number of Oxidizing agent (oxidant): takes electrons electrons equal. Reducing agent (reductant): gives electrons 4. Add the reactions and simplify.) Fe3+ + V2+ → Fe2+ + V3 + Example: Balance the two half reactions and redox Important Redox Titrants and the Reactions reaction equation of the titration of an acidic solution of Na2C2O4 (sodium oxalate, colorless) with KMnO4 (deep purple). Oxidizing Reagents (Oxidants) - 2- 2+ MnO4 (qa ) + C2O4 (qa ) → Mn (qa ) + CO2(g) (1)Potassium Permanganate +qa -qa 2-qa 16H ( ) + 2MnO4 ( ) + 5C2O4 ( ) → − + − 2+ 2+ MnO 4 +8H +5 e → Mn + 4 H2 O 2Mn (qa ) + 8H2O(l) + 10CO2( g) MnO − +4H+ + 3 e − → MnO( s )+ 2 H O Example: Balance 4 2 2 Sn2+ + Fe3+ <=> Sn4+ + Fe2+ − − 2− MnO4 + e→ MnO4 2+ - 3+ 2+ Fe + MnO4 <=> Fe + Mn 1 Important Redox Titrants -
Problem Set #12, Chem 340, Fall 2013 – Due Wednesday, Dec 4, 2013 Please Show All Work for Credit to Hand In: Ionic Equilibria: –4 1
Problem Set #12, Chem 340, Fall 2013 – Due Wednesday, Dec 4, 2013 Please show all work for credit To hand in: Ionic equilibria: –4 1. Calculate the value of m± in 5.0 10 molal solutions of (a) KCl, (b) Ca(NO3) 2, and (c) ZnSO4. Assume complete dissociation. a) KCl 1 vv v m= v v m 41 mm = 1 5.0 10 molkg b) Ca(NO3)2 1 vv v m= v v m 11 mm= 4 33 4 5.0 104 molkg 1 7.9 10 4 molkg 1 c) ZnSO4 1 vv v m= v v m 1 mm= 1 2 5.0 1041 molkg 2. Calculate ±, and a±for a 0.0325 m solution of K4Fe(CN) 6 at 298 K. m 2 21 2 2 I v z v z m z m z 22 1 I 4 0.0325 mol kg1 4 2 0.0325 mol kg 1 0.325 mol kg 1 2 I ln 1.173zz 1.173 4 0.325 2.6749 mol kg1 0.069 1 1 vv v 45 1 1 m= v v m 4 0.0325 mol kg 0.099 mol kg m a 0.099 0.069 0.0068 m –3 3. Chloroacetic acid has a dissociation constant of Ka = 1.38 10 . (a) Calculate the degree of dissociation for a 0.0825 m solution of this acid using the Debye–Hückel limiting law. (b) Calculate the degree of dissociation for a 0.0825 m solution of this acid that is also 0.022 m in KCl using the Debye–Hückel limiting law. -
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Article Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures Vincenzo Liso 1,*, Giorgio Savoia 1, Samuel Simon Araya 1, Giovanni Cinti 2 and Søren Knudsen Kær 1 1 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; [email protected] (G.S.); [email protected] (S.S.A.); [email protected] (S.K.K.) 2 Department of Engineering, Universitá degli Studi di Perugia, 06125 Perugia PG, Italy; (G.C.) [email protected] * Correspondence: [email protected]; Tel.: +45-2137-0207 Received: 23 October 2018; Accepted: 20 November 2018; Published: 23 November 2018 Abstract: In this paper, a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 °C and 80 °C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode, anode, membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e., H2, O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion, electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e., activation, ohmic, concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. -
Chapter 7 Transport of Ions in Solution and Across Membranes
Chapter 7 Transport of ions in solution and across membranes 7-1. Introduction 7-2. Ionic fluxes in solutions 7-2.1. Fluxes due to an electrical field in a solution 7-2.2. Flux due to an electrochemical potential gradient 7-3. Transmembrane potentials 7-3.1. The Nernst potential, the single ion case where the flux is zero 7-3.2. Current-voltage relationships of ionic channels 7-3.3. The constant field approximation 7-3.4. The case of a neutral particle 7-4. The resting transmembrane potential, ER 7-4.1. Goldman-Hodgkin-Katz expression for the resting potential 7-4.2. Gibbs-Donnan equilibrium and the Donnan potential 7-4.3. Electrodiffusion 7-5. Patch clamp studies of single-channel kinetics 7-6. The action potential in excitable cells 7-6.1. Neuronal currents 7-6.2. The Hodgkin-Huxley nerve action potential 7-6.3. The voltage clamp methods for measuring transmembrane currents 7-6.4. Functional behavior of the nerve axon action potential 7-6.5. Cardiac and other action potentials 7-7. Propagation of the action potential 7-7.1. The cable equations 7-7.2. The velocity of propagation 7-8. Maintaining ionic balance: Pumps and exchangers 7-9. Volume changes with ionic fluxes 7-10. Summary 7-11. Further reading 7-12. Problems 7-13. References 7-13.1. References from previous reference list not appearing in current text or references This chapter lacks the following: Tables and programs. Completion of later parts on the pumps. Complete cross referencing. Improvements in Figures. -
Essentials of Ph Measurement
Essentials of pH Measurement Tim Meirose, Technical Sales Manager Thermo Scientific Electrochemistry Products The world leader in serving science What is pH? • The Theoretical Definition pH = - log aH • aH is the free hydrogen ion activity in a sample, not total ions. • In solutions that contain other ions, activity and concentration are not the same. The activity is an effective concentration of hydrogen ions, rather than the true concentration; it accounts for the fact that other ions surrounding the hydrogen ions will shield them and affect their ability to participate in chemical reactions. • These other ions effectively change the hydrogen ion concentration in any process that involves H+. pH electrodes are an ISE for hydrogen. 2 What is pH? • pH = “Potential Hydrogen” or Power of Hydrogen • The pH of pure water around room temperature is about 7. This is considered "neutral" because the concentration of hydrogen ions (H+) is exactly equal to the concentration of hydroxide (OH-) ions produced by dissociation of the water. • Increasing the concentration of H+ in relation to OH- produces a solution with a pH of less than 7, and the solution is considered "acidic". • Decreasing the concentration H+ in relation to OH- produces a solution with a pH above 7, and the solution is considered "alkaline" or "basic". OH- + H+ - H OH - + - OH H+ H OH H+ H+ H+ - OH OH- H+ OH- OH- + - LOW pH = LOTS OF H LOTS OF OH = HIGH pH 3 What is pH? Representative pH values • The pH Scale Substance pH Hydrochloric Acid, 10M -1.0 Lead-acid battery 0.5 Gastric acid 1.5 – 2.0 • Each pH unit is a factor 10 in Lemon juice 2.4 + [H ] Cola 2.5 • pH of Cola is about 2.5. -
Galvanic Cells and the Nernst Equation
Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Name:___________________________ Laboratory Section: _______ Galvanic Cells and the Nernst Equation Equipment Voltage probe wires 0.1 M solutions of Pb(NO3)2, Fe(NO3)3, and KNO3 sandpaper or steel wool 0.1 M solutions of Cu(NO3)2 and Zn(NO3)2 plastic document protector 1.0 M solutions of Cu(NO3)2 and Zn(NO3)2 6 x 1.5 cm strips of filter paper Cu(NO3)2: 0.010 M, 0.0010 M, and 0.00010 M Objectives. The objectives of this experiment are to develop an understanding of the "Electrochemical Series" and to illustrate the use the Nernst Equation. Background Any chemical reaction involving the transfer of electrons from one substance to another is an oxidation-reduction (redox) reaction. The substance losing electrons is oxidized while the substance gaining electrons is reduced. Let us consider the following redox reaction: +2 +2 Zn(s) + Pb (aq) Zn (aq) + Pb(s) This redox reaction can be divided into an oxidation and a reduction half-reaction. +2 -1 Zn(s) Zn (aq) + 2 e oxidation half-reaction +2 -1 Pb (aq) + 2 e Pb(s) reduction half-reaction A galvanic cell (Figure 1.) is a device used to separate a redox reaction into its two component half-reactions in such a way that the electrons are forced to travel through an external circuit rather than by direct contact of the oxidizing agent and reducing agent. This transfer of electrons through an external circuit is electricity. Figure 1. Exercise 7 Page 2 Each side of the galvanic cell is known as a half-cell. -
Nernst Equation, Equlibrium and Potential
nernst.mcd 6/12/97 Nernst Equation, Equlibrium and Potential Starting with the Nernst Equation for the equlibrium; Ox + n e- <--> Red : R.T C ox E E .ln Typical form of Nernst Equation cell std_cell . n F C red n.F C ox Rearange E E . ln cell std_cell . R T C red n.F E E . C ox cell std_cell . e R T Gives the ratio of oxidized to C red reduced form of redox pair. n.F ( DE). C ox . e R T Reduced variables to DE, the C red difference between the equlibrium potential and the applied potential. This function describes how the equlibrium ration of oxidized and reduced form depend upon the applied potential. Notice that if DE = 0 Where the applied potential is the same as the standard cell potential. Then the exponent is 0, so the ratio of Cox/Cred = 1. This is the conditions for the standard state. If DE > 0 Where the applied potential is positive of Eo. Now the exponent is greater than 0 so the ratio of Cox/Cred >1. The concentration of the oxidized form is greater than the concentration of the reduced form. This is consistent with the half reaction because an applied potential positive of Eo pulls e-'s off and causes oxidation. If DE < 0. Where the applied potential is negative of Eo. Now the exponent is less than 0 so the ratio of Cox/Cred < 1. The concentration of the oxidized form is less than the concentration of the reduced form. This is consistent with the half reaction because an applied potential negative of Eo pushes e-'s on and causes reduction.