Installing R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rockerverse: Packages and Applications for Containerisation
PREPRINT 1 The Rockerverse: Packages and Applications for Containerisation with R by Daniel Nüst, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark, Gergely Daróczi, Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sólymos, Tyson Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, Nan Xiao Abstract The Rocker Project provides widely used Docker images for R across different application scenarios. This article surveys downstream projects that build upon the Rocker Project images and presents the current state of R packages for managing Docker images and controlling containers. These use cases cover diverse topics such as package development, reproducible research, collaborative work, cloud-based data processing, and production deployment of services. The variety of applications demonstrates the power of the Rocker Project specifically and containerisation in general. Across the diverse ways to use containers, we identified common themes: reproducible environments, scalability and efficiency, and portability across clouds. We conclude that the current growth and diversification of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse ecosystem of packages, developing common practices for applications, and exploring alternative containerisation software. Introduction The R community continues to grow. This can be seen in the number of new packages on CRAN, which is still on growing exponentially (Hornik et al., 2019), but also in the numbers of conferences, open educational resources, meetups, unconferences, and companies that are adopting R, as exemplified by the useR! conference series1, the global growth of the R and R-Ladies user groups2, or the foundation and impact of the R Consortium3. -
Installing R and Cran Binaries on Ubuntu
INSTALLING R AND CRAN BINARIES ON UBUNTU COMPOUNDING MANY SMALL CHANGES FOR LARGER EFFECTS Dirk Eddelbuettel T4 Video Lightning Talk #006 and R4 Video #5 Jun 21, 2020 R PACKAGE INSTALLATION ON LINUX • In general installation on Linux is from source, which can present an additional hurdle for those less familiar with package building, and/or compilation and error messages, and/or more general (Linux) (sys-)admin skills • That said there have always been some binaries in some places; Debian has a few hundred in the distro itself; and there have been at least three distinct ‘cran2deb’ automation attempts • (Also of note is that Fedora recently added a user-contributed repo pre-builds of all 15k CRAN packages, which is laudable. I have no first- or second-hand experience with it) • I have written about this at length (see previous R4 posts and videos) but it bears repeating T4 + R4 Video 2/14 R PACKAGES INSTALLATION ON LINUX Three different ways • Barebones empty Ubuntu system, discussing the setup steps • Using r-ubuntu container with previous setup pre-installed • The new kid on the block: r-rspm container for RSPM T4 + R4 Video 3/14 CONTAINERS AND UBUNTU One Important Point • We show container use here because Docker allows us to “simulate” an empty machine so easily • But nothing we show here is limited to Docker • I.e. everything works the same on a corresponding Ubuntu system: your laptop, server or cloud instance • It is also transferable between Ubuntu releases (within limits: apparently still no RSPM for the now-current Ubuntu 20.04) -
R Generation [1] 25
IN DETAIL > y <- 25 > y R generation [1] 25 14 SIGNIFICANCE August 2018 The story of a statistical programming they shared an interest in what Ihaka calls “playing academic fun language that became a subcultural and games” with statistical computing languages. phenomenon. By Nick Thieme Each had questions about programming languages they wanted to answer. In particular, both Ihaka and Gentleman shared a common knowledge of the language called eyond the age of 5, very few people would profess “Scheme”, and both found the language useful in a variety to have a favourite letter. But if you have ever been of ways. Scheme, however, was unwieldy to type and lacked to a statistics or data science conference, you may desired functionality. Again, convenience brought good have seen more than a few grown adults wearing fortune. Each was familiar with another language, called “S”, Bbadges or stickers with the phrase “I love R!”. and S provided the kind of syntax they wanted. With no blend To these proud badge-wearers, R is much more than the of the two languages commercially available, Gentleman eighteenth letter of the modern English alphabet. The R suggested building something themselves. they love is a programming language that provides a robust Around that time, the University of Auckland needed environment for tabulating, analysing and visualising data, one a programming language to use in its undergraduate statistics powered by a community of millions of users collaborating courses as the school’s current tool had reached the end of its in ways large and small to make statistical computing more useful life. -
Read.Csv("Titanic.Csv", As.Is = "Name") Factors - Categorical Variables
Introduction to R by Debby Kermer George Mason University Library Data Services Group http://dataservices.gmu.edu [email protected] http://dataservices.gmu.edu/workshop/r 1. Create a folder with your name on the S: Drive 2. Copy titanic.csv from R Workshop Files to that folder History R ≈ S ≈ S-Plus Open Source, Free www.r-project.org Comprehensive R Archive Network Download R from: cran.rstudio.com RStudio: www.rstudio.com R Console Console See… > prompt for new command + waiting for rest of command R "guesses" whether you are done considering () and symbols Type… ↑[Up] to get previous command Type in everything in font: Courier New 3+2 3- 2 Objects Objects nine <- 9 Historical Conventions nine Use <- to assign values Use . to separate names three <- nine / 3 three Current Capabilities my.school <- "gmu" = is okay now in most cases is okay now in most cases my.school _ RStudio: Press Alt - (minus) to insert "assignment operator" Global Environment Script Files Vectors & Lists numbers <- c(101,102,103,104,105) the same numbers <- 101:105 numbers <- c(101:104,105) numbers[ 2 ] numbers[ c(2,4,5)] Vector Variable numbers[-c(2,4,5)] numbers[ numbers > 102 ] RStudio: Press Ctrl-Enter to run the current line or press the button: Files & Functions Files Pane 2. Choose the "S" Drive 1. Browse Drives 3. Choose your folder Working Directory Functions read.table( datafile, header=TRUE, sep = ",") Function Positional Named Named Argument Argument Argument Reading Files Thus, these would be identical: titanic <- read.table( datafile, header=TRUE, -
R Programming for Data Science
R Programming for Data Science Roger D. Peng This book is for sale at http://leanpub.com/rprogramming This version was published on 2015-07-20 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. ©2014 - 2015 Roger D. Peng Also By Roger D. Peng Exploratory Data Analysis with R Contents Preface ............................................... 1 History and Overview of R .................................... 4 What is R? ............................................ 4 What is S? ............................................ 4 The S Philosophy ........................................ 5 Back to R ............................................ 5 Basic Features of R ....................................... 6 Free Software .......................................... 6 Design of the R System ..................................... 7 Limitations of R ......................................... 8 R Resources ........................................... 9 Getting Started with R ...................................... 11 Installation ............................................ 11 Getting started with the R interface .............................. 11 R Nuts and Bolts .......................................... 12 Entering Input .......................................... 12 Evaluation ........................................... -
Working with R Steph Locke (Locke Data)
Working with R Steph Locke (Locke Data) Contents Preamble 7 About this book ....................... 7 What you need to already know ............... 7 Steph Locke .......................... 8 Locke Data .......................... 8 Acknowledgements ...................... 9 Conventions .......................... 9 Feedback ........................... 10 I R at a high level 13 1 About R 15 1.1 History ......................... 15 1.2 CRAN .......................... 16 1.3 Key points to know about R .............. 16 1.4 Summary ........................ 17 2 Why use R? 19 2.1 Data wrangling ..................... 19 2.2 Data science ....................... 20 2.3 Data visualisation ................... 22 2.4 Summary ........................ 25 3 Using RStudio 27 3.1 The console ....................... 27 3.2 Scripts .......................... 29 3.3 Code completion .................... 30 3.4 Projects ......................... 30 3.5 Summary ........................ 32 3 4 CONTENTS 4 Useful resources 33 4.1 The built-in help .................... 33 4.2 Online .......................... 35 4.3 Books .......................... 36 4.4 In-person ........................ 38 4.5 Summary ........................ 38 II R building blocks 39 5 R data types 41 5.1 Numbers ......................... 42 5.2 Text ........................... 44 5.3 Logical values ...................... 47 5.4 Dates .......................... 48 5.5 Missings ......................... 50 5.6 Summary ........................ 51 5.7 R Data Types Exercises ................ 52 6 -
R Snippets Release 0.1
R Snippets Release 0.1 Shailesh Nov 02, 2017 Contents 1 R Scripting Environment 3 1.1 Getting Help...............................................3 1.2 Workspace................................................3 1.3 Arithmetic................................................4 1.4 Variables.................................................5 1.5 Data Types................................................6 2 Core Data Types 9 2.1 Vectors..................................................9 2.2 Matrices................................................. 15 2.3 Arrays.................................................. 22 2.4 Lists................................................... 26 2.5 Factors.................................................. 29 2.6 Data Frames............................................... 31 2.7 Time Series................................................ 36 3 Language Facilities 37 3.1 Operator precedence rules........................................ 37 3.2 Expressions................................................ 38 3.3 Flow Control............................................... 38 3.4 Functions................................................. 42 3.5 Packages................................................. 44 3.6 R Scripts................................................. 45 3.7 Logical Tests............................................... 45 3.8 Introspection............................................... 46 3.9 Coercion................................................. 47 3.10 Sorting and Searching......................................... -
Working in the Tidyverse Desi Quintans, Jeff Powell 2 Contents
Working in the Tidyverse Desi Quintans, Jeff Powell 2 Contents 1 Preface 7 Workshop goals . .7 Assumed knowledge . .7 Conventions in this manual . .8 2 Setting up the Tidyverse 9 Software to install . .9 Installing course material and packages . .9 Workflow suggestions . 10 An example of a small Rmarkdown document . 12 3 Tidyverse: What, why, when? 15 What is the Tidyverse? . 15 What are the advantages of Tidyverse over base R? . 16 What are the disadvantages of the Tidyverse? . 16 4 The Pipeline 17 What does the pipe %>% do?........................................ 17 Using the pipe . 18 Debugging a pipeline . 22 5 What do all these packages do? 25 Importing data . 25 Manipulating data frames . 26 Modifying vectors . 27 Iterating and functional programming . 28 Graphing . 29 Statistical modelling . 29 3 4 CONTENTS 6 Importing data 31 Importing one CSV spreadsheet . 31 Importing several CSV spreadsheets . 32 Saving (exporting) to a .RDS file . 34 7 Reshaping and completing 35 What is tidy data? . 35 Preparing a practice dataset for reshaping . 36 Spreading a long data frame into wide . 37 Gathering a wide data frame into long . 38 A quick word about dots ......................................... 38 Separating one column into several . 40 Completing a table . 41 8 Joining data frames together 43 Classic row-binding and column-binding . 43 Joining data frames by value . 44 9 Choosing and renaming columns 49 Choosing columns by name . 49 Choosing columns by value . 52 Renaming columns . 53 10 Choosing rows 55 Building a dataset with duplicated rows . 55 Reordering rows . 55 Removing duplicate rows . 57 Removing rows with NAs.......................................... 58 Choosing rows by value . -
Introduction to R, Day 1: “Getting Oriented” Michael Chimenti and Diana Kolbe Dec 5 & 6 2019 Iowa Institute of Human Genetics
Introduction to R, Day 1: “Getting oriented” Michael Chimenti and Diana Kolbe Dec 5 & 6 2019 Iowa Institute of Human Genetics Slides adapted from HPC Bio at Univ. of Illinois: https://wiki.illinois.edu/wiki/pages/viewpage.action?pageId=705021292 Distributed under a CC Attribution ShareAlike v4.0 license (adapted work): https://creativecommons.org/licenses/by-sa/4.0/ Learning objectives: 1. Be able to describe what R is and how the programming environment works. 2. Be able to use RStudio to install add-on packages on your own computer. 3. Be able to read, understand and write simple R code 4. Know how to get help. 5. Be able to describe the differences between R, RStudio and Bioconductor What is R? (www.r-project.org) • "... a system for statistical computation and graphics" consisting of: 1. A simple and effective programming language 2. A run-time environment with graphics • Many statistical procedures available for R; currently 15,111 additional add-on packages in CRAN • Completely free, open source, and available for Windows, Unix/Linux, and Mac What is Bioconductor? (www.bioconductor.org) • “… open source, open development software project to provide tools for the analysis and comprehension of high-throughput genomic data” • Primarily based on R language (functions can be in other languages), and run in R environment • Current release consists of 1741 software packages (sets of functions) for specific tasks • Also maintains 948 annotation packages for many commercial arrays and model organisms plus 371 experiment data packages and -
Analytical and Other Software on the Secure Research Environment
Analytical and other software on the Secure Research Environment The Research Environment runs with the operating system: Microsoft Windows Server 2016 DataCenter edition. The environment is based on the Microsoft Data Science virtual machine template and includes the following software: • R Version 4.0.2 (2020-06-22), as part of Microsoft R Open • R Studio Desktop 1.3.1093 working with R 4.0.2 • Anaconda 3, including an environment for Python 3.8.5 • Python, 3.8.5 as part of the Anaconda base environment • Jupyter Notebook, as part of the Anaconda3 environment • Microsoft Office 2016 Standard edition, including Word, Excel, PowerPoint, and OneNote (Access not included) • JuliaPro 0.5.1.1 and the Juno IDE for Julia • PyCharm Community Edition, 2020.3 • PLINK • JAGS • WinBUGS • OpenBUGS • stan and rstan • Apache Spark 2.2.0 • SparkML and pySpark • Apache Drill 1.11.0 • MAPR Drill driver • VIM 8.0.606 • TensorFlow • MXNet, MXNet Model Server • Microsoft Cognitive Toolkit (CNTK) • Weka • Vowpal Wabbit • xgboost • Team Data Science Process (TDSP) Utilities • VOTT (Visual Object Tagging Tool) 1.6.11 • Microsoft Machine Learning Server • PowerBI • Docker version 10.03.5, build 2ee0c57608 • SQL Server Developer Edition (2017), including Management Studio and SQL Server Integration Services (SSIS) • Visual Studio Code 1.17.1 • Nodejs • 7-zip • Evince PDF Viewer • Acrobat Reader • Microsoft Photo Viewer • PowerShell 6 March 2021 Version 1.2 And in the Premium research environments: • STATA 16.1 • SAS 9.4, m4 (academic license) Users also have the ability to bring in additional software if the software was specified in the data request, the software runs in the operating system described above, and the user can provide Vivli with any necessary licensing keys. -
Introduction to Ggplot2
https://opr.princeton.edu/workshops/58 Introduction to ggplot2 Dawn Koffman Office of Population Research Princeton University October 2020 1 https://opr.princeton.edu/workshops/58 Part 1: Concepts and Terminology “It’s hard to succinctly describe how ggplot2 works because it embodies a deep philosophy of visualisation.” - From https://ggplot2.tidyverse.org 2 https://opr.princeton.edu/workshops/58 R Package: ggplot2 Used to produce statistical graphics, author = Hadley Wickham "attempt to take the good things about base and lattice graphics and improve on them with a strong, underlying model “ described in ggplot2 Elegant Graphs for Data Analysis, Second Edition, 2016 based on The Grammar of Graphics by Leland Wilkinson, 2005 "... describes the meaning of what we do when we construct statistical graphics ... More than a taxonomy ... Computational system based on the underlying mathematics of representing statistical functions of data." - does not limit developer to a set of pre-specified graphics adds some concepts to grammar which allow it to work well with R 3 https://opr.princeton.edu/workshops/58 qplot() ggplot2 provides two ways to produce plot objects: qplot() # quick plot – not covered in this workshop uses some concepts of The Grammar of Graphics, but doesn’t provide full capability and designed to be very similar to plot() and simple to use may make it easy to produce basic graphs but may delay understanding philosophy of ggplot2 ggplot() # grammar of graphics plot – focus of this workshop provides fuller implementation of The Grammar of Graphics may have steeper learning curve but allows much more flexibility when building graphs 4 https://opr.princeton.edu/workshops/58 Grammar Defines Components of Graphics data: in ggplot2, data must be stored as an R data frame coordinate system: describes 2-D space that data is projected onto - for example, Cartesian coordinates, polar coordinates, map projections, .. -
Opening Reproducible Research: Research Project Website and Blog Blog Post Authors
Opening Reproducible Research: research project website and blog Blog post authors: Daniel Nüst Lukas Lohoff Marc Schutzeichel Markus Konkol Matthias Hinz Rémi Rampin Vicky Steeves Opening Reproducible Research | doi:10.5281/zenodo.1485438 Blog posts Demo server update 14 Aug 2018 | By Daniel Nüst We’ve been working on demonstrating our reference-implementation during spring an managed to create a number of example workspaces. We now decided to publish these workspaces on our demo server. Screenshot 1: o2r reference implementation listing of published Executable Research Compendia . The right-hand side shows a metadata summary including original authors. The papers were originally published in Journal of Statistical Software or in a Copernicus Publications journal under open licenses. We have created an R Markdown document for each paper based on the included data and code following the ERC specification for naming core files, but only included data, an R Markdown document and a HTML display file. The publication metadata, the runtime environment description (i.e. a Dockerfile ), and the runtime image (i.e. a Docker image tarball) were all created during the ERC creation process without any human interaction (see the used R code for upload), since required metadata were included in the R Markdown document’s front matter. The documents include selected figures or in some cases the whole paper, if runtime is not extremely long. While the paper’s authors are correctly linked in the workspace metadata (see right hand side in Screenshot 1), the “o2r author” of all papers is o2r team member Daniel since he made the uploads.