Sustainable Development of Algal Biofuels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRAS Notice 697, Dried Biomass of Euglena Gracilis
GRAS Notice (GRN) No. 697 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Prepared for: Office of Food Additive Safety (FHS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Campus Drive College Park, MD 20740 March 16, 2017 GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Table of Contents Page Part 1. §170.225 Signed Statements and Certification .... ..... ... ... ......................................... ..... .. 3 1.1 Name and Address of Notifier .................................................. .............. .... ...... ... 3 1.2 Common Name of Notified Substance ..... ........................................................... 3 1.3 Conditions of Use .......................................... .... ...... .. ......................... .... .. ... ........ 4 1.4 Basis for GRAS ................................................................................................... 5 1.5 Availability of Information ..................................................................................... 5 1.6 Freedom of Information Act, 5 U.S.C. 552 ........................................................... 5 Part 2. §170.230 Identity, Method of Manufacture, Specifications, and Physical or Technical Effect ................................................................................................. .. ........... 5 2.1 Description ..................................................................................................... -
Abstracts Symposia Talks the Evolution of Protists And
J. Phycol. 47, S1–S98 (2011) Ó 2011 Phycological Society of America DOI: 10.1111/j.1529-8817.2011.01050.x ABSTRACTS SYMPOSIA TALKS studying marine picoeukaryotes and resulting insights on their evolution, diversity and physiology will be discussed. THE EVOLUTION OF PROTISTS AND THEIR ORGANELLES: NEW INSIGHTS FROM THE FRONTIERS OF GENOMICS ECOLOGICAL ASPECTS OF NITROGEN- Roger, Andrew FIXING CYANOBACTERIA ILLUMINATED BY Centre for Comparative Genomics and Evolutionary GENOMICS AND METAGENOMICS Bioinformatics, Department of Biochemistry and Molecular Zehr, J. P. Biology, Dalhousie University University of California, Santa Cruz, USA, [email protected] The availability of inexpensive genome and tran- Tripp, H. J. scriptome sequencing capacity has furnished insights University of California, Santa Cruz, USA, into the biology, biochemistry, evolutionary relation- [email protected] ships and dynamics of protistan genomes at an Hilton, J. unprecedented rate. From these data, large concate- University of California, Santa Cruz, USA, nated data sets of conserved protein genes have been [email protected] assembled and phylogenomic analyses are converging Moisander, P. H., University of Massachusetts, USA, to a stable picture of the inter-relationships of the [email protected] major eukaryotic super-groups. At the same time, Foster, R., Max Planck Institute for Marine Microbiology, comparative assessments of gene contents of diverse Germany, [email protected] microbial eukaryote genomes are allowing us to tease apart the relative impact of primary and secondary Nitrogen is a key nutrient limiting the productivity endosymbiotic organelle-based gene transfer versus of the oceans. Nitrogen fixation is an important lateral gene transfer in shaping the biochemical prop- source of nitrogen to the surface waters of oligo- erties of these organisms and their subcellular com- trophic oceans and was believed to be primarily due partments. -
Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium
Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium July 12-16, 2011 University of Washington Seattle, Washington The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrolment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2011 PSA ANNUAL MEETING: Tim Nelson, Seattle Pacific University Evelyn Lessard, University of Washington PROGRAM DIRECTORS FOR 2011: Dale Casamatta, University of North Florida (PSA) Alastair Simpson, Dalhousie University (ISoP) ii 2011 Organizing Committee Susan Brawley T.J. Evens Dale Casamatta Tim Nelson Julie Koester Dan Reed Evelyn Lessard Alastair Simpson Jon Zehr Please visit the conference headquarters at the Kane Hall Office Space (Kane 234) for registration, assistance, awesome merchandise and up-to-date conference information. -
Excessive Growth of Euglena Sp. and Its Effect on Shallow-Water Ponds
Bioscience Biotechnology Research Communications Vol 14 No (2) April-May-June 2021 Ecological Communication Excessive Growth of Euglena sp. and its Effect on Shallow-Water Ponds Surajit Majumder* Department of Zoology, Bankura Sammilani College, Bankura, West Bengal, India ABSTRACT The Bankura town of district Bankura, West Bengal, India is full of lentic water bodies like pond, reservoir and water tank etc. In these lentic water bodies, some are perennial. Most of the rest waterbodies are seasonal. Out of these, a large number of waterbodies are partly seasonal; that means, these waterbodies can retain the water to some extent during winter to summer, but the water level become low due to various causes. We referred this type of waterbodies as shallow- water pond. And the ultimate rest type of waterbodies is totally seasonal and get dried during winter to summer season. Our point of interest is to compare between the perennial and shallow-waterponds of Bankura town. The fish yield from the shallow-waterponds of Bankura town is quiet low. On the contrary, in the perennial ponds where the water depth is minimum 3-4 metre, do not face this problem at all. Till today it is said that, in Bankura town the pisciculture is less efficient due to various natural and anthropogenic causes. But the actual cause was unknown till date. After studying various physico-chemical and hydrobiological parameters following standard methods of APHA we have observed a remarkable change in these shallow-water ponds especially during that season. A rapid and exceptionally dense accumulation of algae (Euglena sp.) was observed floating over these shallow-water ponds. -
Springer International Publishing AG 2017 1 J.M
Euglenida Brian S. Leander, Gordon Lax, Anna Karnkowska, and Alastair G. B. Simpson Abstract Euglenids are a group of >1500 described species of single-celled flagellates with diverse modes of nutrition, including phagotrophy and photoautotrophy. The group also encompasses a clade of specialist “primary” osmotrophs (Aphagea) and, very likely, one group of phagotrophs that are ectosymbiont-supporting anaerobes (Symbiontida). Almost all euglenids are free-living. The (usually) one or two emergent flagella have thick paraxonemal (paraxial) rods and originate in a deep pocket/reservoir, while the cell surface is almost always supported by a pellicle of parallel proteinaceous strips underlain by microtubules. Cells with 4–12 strips are rigid; most of those with more strips (typically ~20–40) have them arranged helically and exhibit active cell deformation called “euglenid motion” or “metaboly.” Most phagotrophic euglenids are surface-associated bacterivores or eukaryovores that employ a flagellar gliding motility; they are abundant in marine and freshwater sediments. Photoautotrophic species (Euglenophyceae) constitute a single subclade within euglenids and have a plastid (chloroplast) of secondary endosymbiotic origin, with three bounding membranes. The plastid is typically green, with chlorophylls a + b, and was derived from a chloroplastidan alga related to the Pyramimonadales. Photoautotrophic euglenids move primarily by swimming, and most (members of the taxon Euglenales, e.g., Euglena) have a single emergent flagellum and are generally restricted to fresh and brackish waters. B.S. Leander (*) • A. Karnkowska The Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada e-mail: [email protected] G. Lax • A.G.B. Simpson Department of Biology, Dalhousie University, Halifax, NS, Canada # Springer International Publishing AG 2017 1 J.M. -
International Phycological Congress
Abstracts of papers to be presented at the 10th International Phycological Congress Orlando, Florida, USA 4-10 August 2013 Held under the auspices of the International Phycological Society Edited by: M. Dennis Hanisak, James A. Nienow & Akshinthala K. S. K. Prasad Copies of the abstracts will be provided to registered delegates at the 10th International Phycological Congress. The abstracts are arranged in alphabetical order by first author, presenting authors are listed in bold. Phycologia Journal of the International Phycological Society Volume 52, Number 4, supplement July 2013 Description of the Congress Logo The three macroalgae in the logo represent the three major taxa of eukaryotic macroalgae; all are native to Florida. The central position of Halymenia floridana J. Agardh [Halimenia floridana] in the logo represents phycologists coming together in Florida. The other two algae represent the international nature of Phycology and the IPC. The alga forming the base of the logo is Caulerpa mexicana Sonder ex Kützing. While named for its type locality in the country of Mexico, it is found not only in Mexico and Florida, but also in warm waters of many other parts of the world. Bracketing the logo along both sides is Sargassum natans (Linnaeus) Gaillon, a pelagic macroalga found throughout the North Atlantic; as is the case with phycology, individuals of this species know no national boundaries. The images were modified from C. W. Schneider and R.B. Searles‘s 1991 monograph Seaweeds of the Southeastern United States: Cape Hatteras to Cape Canaveral, with their kind permission. Charles D. Amsler and M. Dennis Hanisak Local Organizing Committee, IPC10 1 ____ IN NARRAGANSETT BAY (RHODE QUALITATIVE AND QUANTITATIVE ISLAND, USA) ANALYSIS OF EXO-POLYSACCHARIDES FROM INDIGENOUS RHIZOSPHERIC T.