Sustainable Development of Algal Biofuels

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Development of Algal Biofuels This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13437 Sustainable Development of Algal Biofuels ISBN Committee on the Sustainable Development of Algal Biofuels; Board on 978-0-309-26032-9 Agriculture and Natural Resources; Board on Energy and Environmental Systems; Division on Earth and Life Studies; Division on Engineering and 246 pages Physical Sciences; National Research Council 7 x 10 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels Committee on the Sustainable Development of Algal Biofuels Board on Agriculture and Natural Resources Division on Earth and Life Studies Board on Energy and Environmental Systems Division on Engineering and Physical Sciences Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Contract/Grant No. DE-DT0001899 between the National Academy of Sciences and the Department of Energy. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number 13: 978-0-309-26032-9 International Standard Book Number 10: 0-309-26032-9 Additional copies of this report are available for sale from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu/. Cover: Design by Anne Rogers. Photo courtesy of Sammy Boussiba, J. Blaustein Institute for Desert Research, Sde-Boker. Copyright 2012 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal govern- ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its ad- ministration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also spon- sors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertain- ing to the health of the public. The Institute acts under the responsibility given to the National Acad- emy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to as- sociate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the Na- tional Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. www.national-academies.org Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels COMMITTEE ON THE SUSTAINABLE DEVELOPMENT OF ALGAL BIOFUELS JENNIE C. HUNTER-CEVERA, Chair, Hunter and Associates, Ellicott City, Maryland SAMMY BOUSSIBA, J. Blaustein Institute for Desert Research, Sde-Boker JOEL L. CUELLO, The University of Arizona, Tucson CLIFFORD S. DUKE, Ecological Society of America, Washington, DC REBECCA A. EFROYMSON, Oak Ridge National Laboratory, Tennessee SUSAN S. GOLDEN, University of California, San Diego JENNIFER HOLMGREN, Lanzatech, Roselle, Illinois DONALD L. JOHNSON, Grain-Processing Corporation (retired), Muscatine, Iowa MARK E. JONES, The Dow Chemical Company, Midland, Michigan VAL H. SMITH, The University of Kansas, Lawrence CAI STEGER, Natural Resources Defense Council, New York GREGORY N. STEPHANAPOULOS, Massachusetts Institute of Technology, Massachusetts LARRY P. WALKER, Cornell University, Ithaca, New York ERIC WILLIAMS, Rochester Institute of Technology, New York PAUL V. ZIMBA, Texas A&M University, Corpus Christi Staff EVONNE P.Y. TANG, Study Codirector K. JOHN HOLMES, Study Codirector RUTH S. ARIETI, Research Associate KATHLEEN REIMER, Senior Program Assistant ROBIN A. SCHOEN, Director JAMES ZUCCHETTO, Director v Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels BOARD ON AGRICULTURE AND NATURAL RESOURCES NORMAN R. SCOTT, Chair, Cornell University, Ithaca, New York (Emeritus) PEGGY F. BARLETT, Emory University, Atlanta, Georgia HAROLD L. BERGMAN, University of Wyoming, Laramie RICHARD A. DIXON, Samuel Roberts Noble Foundation, Ardmore, Oklahoma DANIEL M. DOOLEY, University of California, Oakland JOAN H. EISEMANN, North Carolina State University, Raleigh GARY F. HARTNELL, Monsanto Company, St. Louis, Missouri GENE HUGOSON, Global Initiatives for Food Systems Leadership, St. Paul, Minnesota MOLLY M. JAHN, University of Wisconsin-Madison ROBBIN S. JOHNSON, Cargill Foundation, Wayzata, Minnesota A.G. KAWAMURA, Solutions from the Land, Washington, DC JULIA L. KORNEGAY, North Carolina State University, Raleigh KIRK C. KLASING, University of California, Davis VICTOR L. LECHTENBERG, Purdue University, West Lafayette, Indiana PHILIP E. NELSON, Purdue University, West Lafayette, Indiana KEITH PITTS, Marrone Bio Innovations, Davis, California CHARLES W. RICE, Kansas State University, Manhattan HAL SALWASSER, Oregon State University, Corvallis ROGER A. SEDJO, Resources for the Future, Washington, DC KATHLEEN SEGERSON, University of Connecticut, Storrs MERCEDES VAZQUEZ-AÑON, Novus International, Inc., St. Charles, Missouri Staff ROBIN A. SCHOEN, Director CAMILLA YANDOC ABLES, Program Officer RUTH S. ARIETI, Research Associate KAREN L. IMHOF, Administrative Coordinator KARA N. LANEY, Program Officer JANET M. MULLIGAN, Senior Program Associate for Research KATHLEEN REIMER, Senior Program Assistant EVONNE P.Y. TANG, Senior Program Officer PEGGY TSAI, Program Officer vi Copyright © National Academy of Sciences. All rights reserved. Sustainable Development of Algal Biofuels BOARD ON ENERGY AND ENVIRONMENTAL SYSTEMS ANDREW BROWN, JR., Chair, Delphi Corporation, Troy, Michigan WILLIAM F. BANHOLZER, The Dow Chemical Company, Midland, Michigan MARILYN BROWN, Georgia Institute of Technology, Atlanta WILLIAM CAVANAUGH III, Progress Energy (retired), Raleigh, North Carolina PAUL DeCOTIS, Long Island Power Authority, Albany, New York CHRISTINE EHLIG-ECONOMIDES, Texas A&M University, College Station SHERRI GOODMAN, CNA, Alexandria, Virginia NARAIN HINGORANI, Independent Consultant, Los Altos Hills, California ROBERT HUGGETT, Independent Consultant, Seaford, Virginia DEBBIE NIEMEIER, University of California, Davis DANIEL NOCERA, Massachusetts Institute of Technology, Cambridge MICHAEL OPPENHEIMER, Princeton University, New Jersey DAN REICHER, Stanford University, California BERNARD ROBERTSON, Daimler-Chrysler (retired), Bloomfield Hills, Michigan GARY ROGERS, FEV, Inc, Auburn Hills,
Recommended publications
  • GRAS Notice 697, Dried Biomass of Euglena Gracilis
    GRAS Notice (GRN) No. 697 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Prepared for: Office of Food Additive Safety (FHS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Campus Drive College Park, MD 20740 March 16, 2017 GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Table of Contents Page Part 1. §170.225 Signed Statements and Certification .... ..... ... ... ......................................... ..... .. 3 1.1 Name and Address of Notifier .................................................. .............. .... ...... ... 3 1.2 Common Name of Notified Substance ..... ........................................................... 3 1.3 Conditions of Use .......................................... .... ...... .. ......................... .... .. ... ........ 4 1.4 Basis for GRAS ................................................................................................... 5 1.5 Availability of Information ..................................................................................... 5 1.6 Freedom of Information Act, 5 U.S.C. 552 ........................................................... 5 Part 2. §170.230 Identity, Method of Manufacture, Specifications, and Physical or Technical Effect ................................................................................................. .. ........... 5 2.1 Description .....................................................................................................
    [Show full text]
  • Abstracts Symposia Talks the Evolution of Protists And
    J. Phycol. 47, S1–S98 (2011) Ó 2011 Phycological Society of America DOI: 10.1111/j.1529-8817.2011.01050.x ABSTRACTS SYMPOSIA TALKS studying marine picoeukaryotes and resulting insights on their evolution, diversity and physiology will be discussed. THE EVOLUTION OF PROTISTS AND THEIR ORGANELLES: NEW INSIGHTS FROM THE FRONTIERS OF GENOMICS ECOLOGICAL ASPECTS OF NITROGEN- Roger, Andrew FIXING CYANOBACTERIA ILLUMINATED BY Centre for Comparative Genomics and Evolutionary GENOMICS AND METAGENOMICS Bioinformatics, Department of Biochemistry and Molecular Zehr, J. P. Biology, Dalhousie University University of California, Santa Cruz, USA, [email protected] The availability of inexpensive genome and tran- Tripp, H. J. scriptome sequencing capacity has furnished insights University of California, Santa Cruz, USA, into the biology, biochemistry, evolutionary relation- [email protected] ships and dynamics of protistan genomes at an Hilton, J. unprecedented rate. From these data, large concate- University of California, Santa Cruz, USA, nated data sets of conserved protein genes have been [email protected] assembled and phylogenomic analyses are converging Moisander, P. H., University of Massachusetts, USA, to a stable picture of the inter-relationships of the [email protected] major eukaryotic super-groups. At the same time, Foster, R., Max Planck Institute for Marine Microbiology, comparative assessments of gene contents of diverse Germany, [email protected] microbial eukaryote genomes are allowing us to tease apart the relative impact of primary and secondary Nitrogen is a key nutrient limiting the productivity endosymbiotic organelle-based gene transfer versus of the oceans. Nitrogen fixation is an important lateral gene transfer in shaping the biochemical prop- source of nitrogen to the surface waters of oligo- erties of these organisms and their subcellular com- trophic oceans and was believed to be primarily due partments.
    [Show full text]
  • Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium
    Joint Meeting of the Phycological Society of America, International Society of Protistologists & Northwest Algal Symposium July 12-16, 2011 University of Washington Seattle, Washington The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrolment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2011 PSA ANNUAL MEETING: Tim Nelson, Seattle Pacific University Evelyn Lessard, University of Washington PROGRAM DIRECTORS FOR 2011: Dale Casamatta, University of North Florida (PSA) Alastair Simpson, Dalhousie University (ISoP) ii 2011 Organizing Committee Susan Brawley T.J. Evens Dale Casamatta Tim Nelson Julie Koester Dan Reed Evelyn Lessard Alastair Simpson Jon Zehr Please visit the conference headquarters at the Kane Hall Office Space (Kane 234) for registration, assistance, awesome merchandise and up-to-date conference information.
    [Show full text]
  • Excessive Growth of Euglena Sp. and Its Effect on Shallow-Water Ponds
    Bioscience Biotechnology Research Communications Vol 14 No (2) April-May-June 2021 Ecological Communication Excessive Growth of Euglena sp. and its Effect on Shallow-Water Ponds Surajit Majumder* Department of Zoology, Bankura Sammilani College, Bankura, West Bengal, India ABSTRACT The Bankura town of district Bankura, West Bengal, India is full of lentic water bodies like pond, reservoir and water tank etc. In these lentic water bodies, some are perennial. Most of the rest waterbodies are seasonal. Out of these, a large number of waterbodies are partly seasonal; that means, these waterbodies can retain the water to some extent during winter to summer, but the water level become low due to various causes. We referred this type of waterbodies as shallow- water pond. And the ultimate rest type of waterbodies is totally seasonal and get dried during winter to summer season. Our point of interest is to compare between the perennial and shallow-waterponds of Bankura town. The fish yield from the shallow-waterponds of Bankura town is quiet low. On the contrary, in the perennial ponds where the water depth is minimum 3-4 metre, do not face this problem at all. Till today it is said that, in Bankura town the pisciculture is less efficient due to various natural and anthropogenic causes. But the actual cause was unknown till date. After studying various physico-chemical and hydrobiological parameters following standard methods of APHA we have observed a remarkable change in these shallow-water ponds especially during that season. A rapid and exceptionally dense accumulation of algae (Euglena sp.) was observed floating over these shallow-water ponds.
    [Show full text]
  • Springer International Publishing AG 2017 1 J.M
    Euglenida Brian S. Leander, Gordon Lax, Anna Karnkowska, and Alastair G. B. Simpson Abstract Euglenids are a group of >1500 described species of single-celled flagellates with diverse modes of nutrition, including phagotrophy and photoautotrophy. The group also encompasses a clade of specialist “primary” osmotrophs (Aphagea) and, very likely, one group of phagotrophs that are ectosymbiont-supporting anaerobes (Symbiontida). Almost all euglenids are free-living. The (usually) one or two emergent flagella have thick paraxonemal (paraxial) rods and originate in a deep pocket/reservoir, while the cell surface is almost always supported by a pellicle of parallel proteinaceous strips underlain by microtubules. Cells with 4–12 strips are rigid; most of those with more strips (typically ~20–40) have them arranged helically and exhibit active cell deformation called “euglenid motion” or “metaboly.” Most phagotrophic euglenids are surface-associated bacterivores or eukaryovores that employ a flagellar gliding motility; they are abundant in marine and freshwater sediments. Photoautotrophic species (Euglenophyceae) constitute a single subclade within euglenids and have a plastid (chloroplast) of secondary endosymbiotic origin, with three bounding membranes. The plastid is typically green, with chlorophylls a + b, and was derived from a chloroplastidan alga related to the Pyramimonadales. Photoautotrophic euglenids move primarily by swimming, and most (members of the taxon Euglenales, e.g., Euglena) have a single emergent flagellum and are generally restricted to fresh and brackish waters. B.S. Leander (*) • A. Karnkowska The Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada e-mail: [email protected] G. Lax • A.G.B. Simpson Department of Biology, Dalhousie University, Halifax, NS, Canada # Springer International Publishing AG 2017 1 J.M.
    [Show full text]
  • International Phycological Congress
    Abstracts of papers to be presented at the 10th International Phycological Congress Orlando, Florida, USA 4-10 August 2013 Held under the auspices of the International Phycological Society Edited by: M. Dennis Hanisak, James A. Nienow & Akshinthala K. S. K. Prasad Copies of the abstracts will be provided to registered delegates at the 10th International Phycological Congress. The abstracts are arranged in alphabetical order by first author, presenting authors are listed in bold. Phycologia Journal of the International Phycological Society Volume 52, Number 4, supplement July 2013 Description of the Congress Logo The three macroalgae in the logo represent the three major taxa of eukaryotic macroalgae; all are native to Florida. The central position of Halymenia floridana J. Agardh [Halimenia floridana] in the logo represents phycologists coming together in Florida. The other two algae represent the international nature of Phycology and the IPC. The alga forming the base of the logo is Caulerpa mexicana Sonder ex Kützing. While named for its type locality in the country of Mexico, it is found not only in Mexico and Florida, but also in warm waters of many other parts of the world. Bracketing the logo along both sides is Sargassum natans (Linnaeus) Gaillon, a pelagic macroalga found throughout the North Atlantic; as is the case with phycology, individuals of this species know no national boundaries. The images were modified from C. W. Schneider and R.B. Searles‘s 1991 monograph Seaweeds of the Southeastern United States: Cape Hatteras to Cape Canaveral, with their kind permission. Charles D. Amsler and M. Dennis Hanisak Local Organizing Committee, IPC10 1 ____ IN NARRAGANSETT BAY (RHODE QUALITATIVE AND QUANTITATIVE ISLAND, USA) ANALYSIS OF EXO-POLYSACCHARIDES FROM INDIGENOUS RHIZOSPHERIC T.
    [Show full text]