Temporal Variation of the Small Eukaryotic Community in Two Freshwater Lakes: Emphasis on Zoosporic Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Variation of the Small Eukaryotic Community in Two Freshwater Lakes: Emphasis on Zoosporic Fungi Vol. 67: 91–105, 2012 AQUATIC MICROBIAL ECOLOGY Published online October 2 doi: 10.3354/ame01592 Aquat Microb Ecol OPENPEN ACCESSCCESS FEATURE ARTICLE Temporal variation of the small eukaryotic community in two freshwater lakes: emphasis on zoosporic fungi Emilie Lefèvre1,2,*, Peter M. Letcher1, Martha J. Powell1 1Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA 2Present address: Department of Biology, Duke University, Durham, North Carolina 27701, USA ABSTRACT: Applications of molecular approaches to the study of microbial eukaryotic communities in fresh- water lakes are transforming our understanding of these ecosystems. One of the most unexpected discov- eries is that zoosporic fungi significantly dominate the planktonic fungal diversity. Although zoosporic fungi are now recognized as an important component of aquatic microbial food webs, our knowledge of their community structure and temporal variability remains poor. The objectives of our study were (1) to compare and describe the contribution of zoosporic fungi to the eukaryotic diversity in 2 lakes differing in their trophic status during the mixing and the stratified seasons and (2) to phylogenetically identify the recovered zoosporic fungal sequences. The small eukaryotes (0.6 to 8 µm) of the euphotic zone of the oligotrophic Lake Tusca - The meso-eutrophic Lake Lurleen (top) and humic oligotro- loosa and meso-eutrophic Lake Lurleen (Alabama, phic Lake Tuscaloosa (bottom) harbor a high diversity of USA) were collected over 1 yr. Analyses of the 28S planktonic zoosporic fungi, such as the saprobe Rhizoclos- rDNA clone libraries showed that zoosporic fungi dom- matium aurantiacum (right: young sporangia in culture) and inated the small planktonic fungal community and the unidentified parasite (arrows) on the alga Straurastrum were more diverse in the meso-eutrophic lake and dur- rotula (left: individual in environmental sample). ing the thermal stratification. Although the overall Photos: MJ Powell, PM Letcher, E Lefèvre structure of the eukaryotic community was similar between the 2 lakes, at lower taxonomic levels, com- munity composition differed. Analyses of the retrieved fungal sequences revealed that zoosporic fungi mostly affiliated with Rhizophydiales and Chytridiales or INTRODUCTION formed environmental clades. Although the phyto- planktonic community was also monitored, zoosporic Recent applications of molecular approaches to fungal parasites were rarely observed on algae. These results provide new insights into the diversity and characterize eukaryotic communities have revealed seasonality of the zoosporic fungal community in lake that zoosporic fungi significantly contribute to the eu- ecosystems. karyotic diversity in a range of ecosystems, such as high-elevation soils (Freeman et al. 2009), deep-sea KEY WORDS: Zoosporic fungi · Molecular diversity · hydrothermal ecosystems (Le Calvez et al. 2009, Na- Temporal variation · Freshwater lakes · Plankton gahama et al. 2011), and streams (Nikolcheva & Bär- Resale or republication not permitted without locher 2004, Seena et al. 2008). In freshwater lakes, written consent of the publisher *Email: [email protected] © Inter-Research 2012 · www.int-res.com 92 Aquat Microb Ecol 67: 91–105, 2012 where fungi in general have rarely been factored in netic standpoint, to explore the diversity of fresh - as a component of the microbial food web (Wetzel water zoosporic fungi and accurately place the re - 2001, Sigee 2005), a high diversity of zoosporic fungal covered sequences within the zoosporic fungal sequences has been unexpectedly recovered in re - phylogeny. To address these objectives, an rDNA cent studies (Lefranc et al. 2005, Slapeta et al. 2005, environmental survey was conducted on the small Lefèvre et al. 2007, 2008, Lepère et al. 2008, Chen et planktonic fraction (0.6 to 8 µm). The small plank- al. 2008, Luo et al. 2011, Monchy et al. 2011). tonic fraction was selected in order to relate the The typical life cycle of a zoosporic fungus begins detected diversity to similar previous studies also with the attachment of a free-swimming uniflagellate conducted on the small fraction, which harbors a rel- zoospore to decaying or living organic substrates. atively high diversity of zoosporic fungi (Lefranc et The encysted zoospore develops into a mature thal- al. 2005, Lefèvre et al. 2007, 2008, Lepère et al. 2008) lus (sporangium typically with rhizoids) obtaining its (see Table 2). Because of the exploratory aspect of energy from the substrate. When the thallus reaches our study for undescribed zoosporic fungi, we chose maturity, the sporangium releases zoospores (typi- to use universal eukaryotic primers instead of more cally 3 to 8 µm diameter) into the environment (Fuller specific fungal primers designed from mostly terres- & Jaworski 1987, Powell 1993). Multiple roles for trial and non-zoosporic fungi (White et al. 1990, zoosporic fungi in lake ecosystems have been sug- Borneman & Hartin 2000). In addition, although the gested, including (1) parasites affecting phytoplank- main goal of the present study focused on the zoo - tonic successions and impacting primary production, sporic fungal community, the use of universal euka - (2) saprobes playing an important role in decomposi- ryotic primers provided an overview of the small tion of recalcitrant organic material such as chitin eukaryotic community, therefore giving us the and cellulose, and (3) prey, via the consumption of opportunity to place the recovered zoosporic fungal their zoospores by predators, transferring energy diversity in the context of the whole eukaryotic com- from primary producers and detritus to higher- munity. Finally, to address our second objective, we trophic-level organisms (reviewed by Gleason et al. chose to target the ribosomal large subunit (LSU, i.e. 2008). However, data supporting these assumptions 28S) gene, which has been shown to be more phylo- are relatively scarce (van Donk & Ringelberg 1983, genetically informative for zoosporic fungi than the Kagami & Urabe 2002, Kagami et al. 2004, 2007a, more conserved small subunit (SSU, i.e. 18S) gene or Rasconi et al. 2009), and consequently little is known the more variable ITS region (Letcher et al. 2008a, about the ecological importance and dynamics of b,c). In addition, to characterize the fungal parasitism zoosporic fungi in freshwater lakes. potentially associated with algae, the composition In contrast, phylogenetics has advanced in the past and dynamics of the phytoplanktonic community decade with an impressive amount of molecular and were microscopically determined. ultrastructural data assembled for zoosporic fungi sampled globally (Letcher & Powell 2005a,b, Letcher et al. 2005, 2006, 2008a,b, James et al. 2006a,b, MATERIALS AND METHODS Mozley- Standridge et al. 2009, Simmons et al. 2009, Wakefield et al. 2010, Vélez et al. 2011). These analy- Study sites and sampling ses have profoundly improved our understanding of the phylogenetic relationships and diversity of zoo - Lake Tuscaloosa (LT) and Lake Lurleen (LL) are 2 sporic fungi. However, the majority of sequences re- freshwater reservoirs situated in the Black Warrior covered from lakes have not matched any de scribed River basin, Alabama, USA (Ward et al. 2005). LT zoosporic fungi and do not affiliate with any known has a surface area of 24 km2 and a maximum depth zoosporic fungal taxa. These results suggest that of 30 m, while LL has a surface area of 1 km2 and a lakes harbor a high and largely unexplored zoosporic maximum depth of 10 m. Samplings and measure- fungal diversity that perhaps represents novel phylo- ments were taken every 1 to 2 wk from December genetic lineages. 2007 to November 2008 (LT) and from October In this context, the present study had 2 main objec- 2008 to November 2009 (LL) at a central point in each tives: (1) from an ecological standpoint, to describe lake (LT: 33° 17’ 24.61’’ N, 87° 30’ 41.43’’ W; LL: 33° 17’ the community structure of freshwater zoosporic 27.65’’ N, 87° 30’ 40.51’’ W). Temperature and dis- fungi in 2 lakes differing in their trophic status and solved oxygen vertical profiles were obtained using a the dynamics of the recovered diversity during 2 con- YSI550A multiparameter probe (YSI). To describe the trasted seasons of the year; and (2) from a phyloge- phytoplanktonic community and characterize the Lefèvre et al.: Planktonic fungal community in freshwater lakes 93 fungal parasitism potentially associated with this purification was performed using the NucleoSpin community, phytoplanktonic samples were collected Plant kit (Macherey-Nagel). DNA was quantified us- in triplicate using a vertical plankton tow (60 µm ing a Nanodrop ND-1000 (NanoDrop Technologies), mesh size) from the bottom of the euphotic zone and its integrity (i.e. unsheared high molecular (approximated using a Secchi disc) to the surface. In weight DNA) was checked on a 1% agarose gel. For the laboratory, phytoplanktonic samples were pro- each sample, a partial 28S (~900 base pairs) fragment cessed following the protocol described by Wetzel & was amplified using LROR (5’-ACC CGC TGA ACT Likens (1990). Cells were observed using a Nikon TAA GC-3’) and LR5 (5’-TCC TGA GGG AAA CTT Labophot-2 microscope and identified using identifi- CG-3’) eukaryotic primers (Vilgalys & Hester 1990). cation keys from Smith (1950) and Wehr & Sheath PCR reactions were performed in 50 µl containing −1 (2003). Biovolumes were calculated using equations distilled H2O, 2.5 to 5 ng of DNA, 200 µmol l of each provided by Hillebrand et al. (1999), and a ratio of dNTP, 0.2 µmol l−1 of each primer, 2.5 U of Taq DNA cellular organic carbon to cell volume of 0.1 was used polymerase, and 1X NEB ThermoPol Buffer (New to estimate phytoplanktonic biomass (Wetzel & Eng land Biolabs). The PCR program consisted of Likens 1990). Water samples for molecular analysis 2 min at 94°C, followed by 30 cycles of 1 min at 94°C, and chlorophyll a measurements were collected in 1 min at 50°C, and 1 min at 72°C, and a final triplicate every meter from the bottom of the eu pho - extension of 10 min at 72°C (MJ Research PTC-200 tic zone (varying from 2 to 5 m and 1 to 3 m for LT and thermocycler, Bio-Rad).
Recommended publications
  • For Review Only 377 Algomyces Stechlinensis Clustered Together with Environmental Clones from a Eutrophic 378 Lake in France (Jobard Et Al
    Journal of Eukaryotic Microbiology Page 18 of 43 1 Running head: Parasitic chytrids of volvocacean algae. 2 3 Title: Diversity and Hidden Host Specificity of Chytrids infecting Colonial 4 Volvocacean Algae. 5 Authors: Silke Van den Wyngaerta, Keilor Rojas-Jimeneza,b, Kensuke Setoc, Maiko Kagamic, 6 Hans-Peter Grossarta,d 7 a Department of ExperimentalFor Limnology, Review Leibniz-Institute Only of Freshwater Ecology and Inland 8 Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany 9 b Universidad Latina de Costa Rica, Campus San Pedro, Apdo. 10138-1000, San Jose, Costa Rica 10 c Department of Environmental Sciences, Faculty of Science, Toho University, Funabashi, Chiba, 11 Japan 12 d Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14476 Potsdam, 13 Germany 14 15 Corresponding Author: 16 Silke Van den Wyngaert, Department of Experimental Limnology, Leibniz-Institute of 17 Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany 18 Telephone number: +49 33082 69972; Fax number: +49 33082 69917; e-mail: [email protected], 19 [email protected] 20 21 22 23 1 Page 19 of 43 Journal of Eukaryotic Microbiology 24 ABSTRACT 25 Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in 26 aquatic ecosystems. Many chytrid species have been morphologically described as parasites on 27 phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence 28 data. In this study we isolated and cultivated three parasitic chytrids, infecting a common 29 volvocacean host species, Yamagishiella unicocca. In order to identify the chytrids, we 30 characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S 31 and 28S rDNA genes.
    [Show full text]
  • Chytrid Fungi Associated with Pollen Decomposition in Crater Lake, Oregon Kathleen A
    APPLIED & ENVIRONMENTAL MICROBIOLOGY • 83 CHYTRID FUNGI ASSOCIATED WITH POLLEN DECOMPOSITION IN CRATER LAKE, OREGON KATHLEEN A. PAGE* AND MEGHAN K. FLANNERY DEPARTMENT OF BIOLOGY, SOUTHERN OREGON UNIVERSITY, ASHLAND, OR USA MANUSCRIPT RECEIVED 25 OCTOBER 2017; ACCEPTED 27 JANUARY 2018 Copyright 2018, Fine Focus. All Rights Reserved. 84 • FINE FOCUS, VOL. 4(1) ABSTRACT We identified chytrid fungi that were attached to pine pollen on the surface of Crater Lake. Fungi were identified by large subunit (LSU) rRNA gene sequencing of lake pollen extracts and by isolation of a chytrid fungus that was present on the pollen. LSU rRNA PCR products were cloned, sequenced and identified. The majority of eukaryotic LSU rRNA sequences associated with pollen were found to be members of the chytrid order Rhizophyidiales. A fungal CORRESPONDING isolate was characterized culturally, morphologically, and AUTHOR by DNA sequencing and was identified as a member of the genus Paranamyces, in the order Rhizophydiales. In addition, Kathleen A. Page protist LSU rRNA sequences from the phylum Ciliophora [email protected] were found. The concentrations of dissolved organic matter, nitrogen, and phosphate in surface water that had visible KEYWORDS pollen rafts increased according to the concentration of pollen in the water. Each of these nutrients was detected • Chytrid at several fold higher levels in water with pollen rafts as • Pollen compared to surface water lacking pollen rafts. These results • Crater Lake ecosystem • Food Webs provide evidence for the role of chytrid fungi in nutrient • Fungal Aquatic Ecology release from pollen deposited on Crater Lake. INTRODUCTION The occurrence of pollen in Crater Lake: depth of 594 m.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Chytridiomycetes, Chytridiomycota)
    VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 17–38 doi.org/10.3114/fuse.2020.05.02 Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota) K. Seto1,2,3*, S. Van den Wyngaert4, Y. Degawa1, M. Kagami2,3 1Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294, Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan 2Department of Environmental Science, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan 3Graduate School of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama, Kanagawa 240- 8502, Japan 4Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany *Corresponding author: [email protected] Key words: Abstract: During the last decade, the classification system of chytrids has dramatically changed based on zoospore Chytridiomycota ultrastructure and molecular phylogeny. In contrast to well-studied saprotrophic chytrids, most parasitic chytrids parasite have thus far been only morphologically described by light microscopy, hence they hold great potential for filling taxonomy some of the existing gaps in the current classification of chytrids. The genus Zygorhizidium is characterized by an zoospore ultrastructure operculate zoosporangium and a resting spore formed as a result of sexual reproduction in which a male thallus Zygophlyctis and female thallus fuse via a conjugation tube. All described species of Zygorhizidium are parasites of algae and Zygorhizidium their taxonomic positions remain to be resolved. Here, we examined morphology, zoospore ultrastructure, host specificity, and molecular phylogeny of seven cultures of Zygorhizidium spp. Based on thallus morphology and host specificity, one culture was identified as Z.
    [Show full text]
  • Lepelletier Et Al 2014 Dinomyces Arenysensis Gen.Pdf
    Protist, Vol. 165, 230–244, March 2014 http://www.elsevier.de/protis Published online date 1 March 2014 ORIGINAL PAPER Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a Chytrid Infecting Marine Dinoflagellates a,b c,d e f,b Frédéric Lepelletier , Sergey A. Karpov , Elisabet Alacid , Sophie Le Panse , a,b e a,b a,b,1 Estelle Bigeard , Esther Garcés , Christian Jeanthon , and Laure Guillou a CNRS, UMR 7144, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France b Université Pierre et Marie Curie (Paris VI), Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France c Zoological Institute RAS, St. Petersburg, Russia d St. Petersburg State University, St. Petersburg, Russia e Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, 37-49, E08003 Barcelona, Spain f CNRS, FR 2424, Plate-forme Merimage, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff Cedex, France Submitted January 14, 2014; Accepted February 21, 2014 Monitoring Editor: Michael Melkonian Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cul- tivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species.
    [Show full text]
  • Ultrastructural and Molecular Analyses of Rhizophydiales (Chytridiomycota) Isolates from North America and Argentina
    mycological research 112 (2008) 759–782 journal homepage: www.elsevier.com/locate/mycres Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina Peter M. LETCHERa,*, Carlos G. VE´LEZb, Marı´a Eugenia BARRANTESb, Martha J. POWELLa, Perry F. CHURCHILLa, William S. WAKEFIELDa aDepartment of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA bDepartamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina article info abstract Article history: The Rhizophydiales is the most recently circumscribed order in the Chytridiomycota. Past Received 12 July 2007 studies focused on soil chytrids from North America and Australia to determine the range Received in revised form of diversity within this clade of chytrids and established three families (Rhizophydiaceae, 9 November 2007 Terramycetaceae, and Kappamycetaceae) in the new order. Although Rhizophydiales contains Accepted 24 January 2008 seemingly simple chytrids morphologically, analyses of ribosomal gene sequences and Corresponding Editor: zoospore characters have demonstrated unexpected genetic and ultrastructural diversity, David L. Hawksworth highlighting the need for broader habitat and geographic sampling to reveal the actual diversity within this new order. To enlarge our sampling, in this study we investigated Keywords: 38 newly cultured chytrids collected from aquatic habitats in Argentina, a territory Chytrid under-explored for chytrid diversity. From analyses of thallus morphology, zoospore ultra- Phylogeny structure, and 28S and ITS1–5.8S–ITS2 ribosomal gene sequences, we expand the concept Ribosomal genes of Rhizophydiales, describing seven new families (Alphamycetaceae, Angulomycetaceae, Aqua- Taxonomy mycetaceae, Globomycetaceae, Gorgonomycetaceae, Pateramycetaceae, and Protrudomycetaceae) Zoospore and eight new genera (Alphamyces, Angulomyces, Aquamyces, Globomyces, Urceomyces, Gorgo- nomyces, Pateramyces, and Protrudomyces).
    [Show full text]
  • Characters and Character States for “Motile Cell”
    Characters and character states for “Motile cell” Location code / cell type ZO, zoospore Flagellum 1. Number of flagella 0, none (i.e., Chytridiomycota, Chytridiomycetes: incertae sedis- Hyaloraphidium curvatum) 1, one (i.e., Chytridiomycota, Blastocladiomycota) 2, multiple (i.e., Neocallimastigomycota) 2. Electron-opaque plug in axoneme core and between axoneme and flagellar membrane 0, absent 1, present (i.e., Chytridiomycota: Chytridiomycetes: Chytridiales, Lobulomycetales, Cladochytriales, incertae sedis: Synchytrium endobioticum, Polychytrium clade; Monoblepharidomycetes) 3. Flagellum coating 0, absent (all taxa except Polyphagus euglenae) 1, present (Polyphagus euglenae) Kinetosome (the term “basal body” is synonymous; Andersen et al. 1991) 4. Electron-opaque core in kinetosome 0, absent (all taxa except Kappamyces) 1, present (Chytridiomycota: Chytridiomycetes: Rhizophydiales- Kappamyces) 5. Scalloped ring within kinetosome, extensions of the A, B, or C microtubule 0, absent 1, present (Lacustromyces hiemalis) Kinetosome-associated structures 6. Kinetosome support 0, absent (Thalassochytrium gracilaripsidis) 1, kinetosome props 2, broken kinetosome props (Olpidium radicale) 3, skirt-like structure surrounding kinetosome (Neocallimastigomycota) 7. Kinetosome-associated plates 0, absent 1, present (Chytridiomycota: Chytridiomycetes: Chytridiales- Group I- type zoospore [Barr 1980]) 8. Kinetosome-associated saddle 0, absent 1, present (Chytridiomycota: Chytridiomycetes: Chytridiales- Group II-type zoospore [Barr 1980]- Chytridium
    [Show full text]
  • (Chytridiomycota): Karlingiella (Gen
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.) Gustavo H. Jerônimo, Ana L. Jesus, D. Rabern Simmons, Timothy Y. James & Carmen L. A. Pires-Zottarelli To cite this article: Gustavo H. Jerônimo, Ana L. Jesus, D. Rabern Simmons, Timothy Y. James & Carmen L. A. Pires-Zottarelli (2019) Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiellacrenulata (sp. nov.), Mycologia, 111:3, 506-516, DOI: 10.1080/00275514.2019.1588583 To link to this article: https://doi.org/10.1080/00275514.2019.1588583 Published online: 23 Apr 2019. Submit your article to this journal Article views: 52 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA 2019, VOL. 111, NO. 3, 506–516 https://doi.org/10.1080/00275514.2019.1588583 Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.) Gustavo H. Jerônimo a, Ana L. Jesusa, D. Rabern Simmons b, Timothy Y. James b, and Carmen L. A. Pires- Zottarellia aNúcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, São Paulo 04301-902, Brazil; bDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085 ABSTRACT ARTICLE HISTORY Six Nowakowskiella species from Brazil were identified and purified on corn meal agar (CMA) plus Received 5 November 2018 glucose and Peptonized Milk-Tryptone-Glucose (PmTG) media and placed into a phylogenetic Accepted 26 February 2019 framework for the genus.
    [Show full text]
  • Elsevier Editorial System(Tm) for Mycological Research
    Elsevier Editorial System(tm) for Mycological Research Manuscript Draft Manuscript Number: MYCRES-D-07-00031R2 Title: A Higher-Level Phylogenetic Classification of the Fungi Article Type: Original Research Keywords: AFTOL, Eumycota, Lichens, Molecular phylogenetics, Mycota, Nomenclature, Systematics Corresponding Author: David S. Hibbett, Corresponding Author's Institution: Clark University First Author: David S Hibbett, PhD Order of Authors: David S Hibbett, PhD; David S. Hibbett Manuscript Region of Origin: UNITED STATES Abstract: A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 19 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Agaricomycetes, Dacrymycetes, Monoblepharidomycetes, Neocallimastigomycetes, Tremellomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota.
    [Show full text]
  • Taxonomic Revision of the Genus <I> Zygorhizidium</I>: <I> Zygorhizidiales</I> and <I> Zygophlycti
    VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 17–38 doi.org/10.3114/fuse.2020.05.02 Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota) K. Seto1,2,3*, S. Van den Wyngaert4, Y. Degawa1, M. Kagami2,3 1Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294, Sugadaira-Kogen, Ueda, Nagano 386-2204, Japan 2Department of Environmental Science, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan 3Graduate School of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama, Kanagawa 240- 8502, Japan 4Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany *Corresponding author: [email protected] Key words: Abstract: During the last decade, the classification system of chytrids has dramatically changed based on zoospore Chytridiomycota ultrastructure and molecular phylogeny. In contrast to well-studied saprotrophic chytrids, most parasitic chytrids parasite have thus far been only morphologically described by light microscopy, hence they hold great potential for filling taxonomy some of the existing gaps in the current classification of chytrids. The genus Zygorhizidium is characterized by an zoospore ultrastructure operculate zoosporangium and a resting spore formed as a result of sexual reproduction in which a male thallus Zygophlyctis and female thallus fuse via a conjugation tube. All described species of Zygorhizidium are parasites of algae and Zygorhizidium their taxonomic positions remain to be resolved. Here, we examined morphology, zoospore ultrastructure, host specificity, and molecular phylogeny of seven cultures of Zygorhizidium spp. Based on thallus morphology and host specificity, one culture was identified as Z.
    [Show full text]
  • The Fungi: an Advance Treatise
    Biologia dos Fungos Olga Fischman Gompertz Walderez Gambale Claudete Rodrigues Paula Benedito Correa Parede. E uma estrutura rfgida que protege a celula de choques osm6ticos (possui ate oito camadas e mede de 200 Durante muito tempo, os fungos foram considerados a 350nm). E composta, de modo geral, por glucanas, mananas coma vegetais e, somente a partir de 1969, passaram a ser e, em menor quantidade, por quitina, protefnas e lipfdios. As c1assificados em urn reino a parte denominado Fungi. glucanas e as mananas estao combinadas corn protefnas, for- Os fungos apresentam urn conjunto de caracterfsticas mando as glicoprotefnas, manoprotefnas e glicomanoprotef- que permitem sua diferenciac;:ao das plantas: nao sintetizam nas. Estudos citoqufmicos demonstraram que cada camada c1orofila nem qualquer pigmento fotossintetico; nao tern ce- possui urn polissacarfdeo dominante: as camadas mais inter- lulose na parede celular, exceto alguns fungos aquaticos, e nas (8~ e 5~) contem beta-1-3, beta-I-3-g1ucanas e mananas, nao armazenarn amide coma substancia de reserva. A presen- enquanto as mais extern as contem mananas e beta-I-6- c;:ade substancias quitinosas na parede da maior parte das glucanas (Fig. 64.2). A primeira e a terceira camadas sac as especies fungicas e a capacidade de armazenar glicogenio os mms ncas em mananas. assemelharn as celulas animais. As ~lucan~ nas ceIulas fUngicas sac normalmente po- Os fungos sac ubfquos, encontrando-se em vegetais, em lfmeros de b-glicose, ligados por pontes betaglicosfdicas. animais, no homem, em detritos e em abundancia no solo, As mananas, polfmeros de manose, representam 0 mate- participando ativamente do cicIo dos elementos na natureza.
    [Show full text]
  • Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your
    Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
    [Show full text]