Haar measures Student seminar on homogeneous dynamics Joost Opschoor
[email protected] Friday 20 October and Monday 27 October, 2017 Contents 1 Recap left-invariant Haar measures . .2 2 Proof of uniqueness up to scaling . .3 3 The modular function (§C.2) . .4 4 Specific examples of Haar measures . .5 5 Nice fact . .7 6 Haar measures on SLd(R)...........................9 DISCLAIMER: This document contains the mistakes it contains . References If not stated otherwise, in-text references are to Einsiedler{Ward. • M. Einsiedler, T. Ward, Ergodic Theory with a View towards Number Theory (Springer- Verlag Londen Limited, 2011) · §8.3 describes Existence of Haar measures (sketch) · §8.3.1 describes \Uniqueness" of Haar measures · §C.2 describes Modular function, examples of Haar measures • G.B. Folland, A course in abstract harmonic analysis, in Studies in Advanced Math- ematics (CRC Press, Boca Raton, FL, 1995) · Section 2.2 describes details on the existence of Haar measures • B. Bekka, P. de la Harpe, A. Valette, Kazhdan's property (T) (Cambridge University Press, 2008) · §A.3, especially interesting are Remark A.3.1 p. 300 and Proposition A.3.3 p. 302. 1 • Hewitt, Ross, Abstract Harmonic Analysis Volume I, second edition (Springer-Verlag, 1979) · Chapter 15, in particular Theorem 15.5 and its proof, pp. 185{193. • J-F. Quint, Syst`emesdynamiques dans les espaces homog`enes (Lecture notes, f´evrier 2012) · §3.2 Mesure de Haar • T. Tao, 245C, Notes 2: The Fourier transform (https://terrytao.wordpress.com/2009/04/06/the-fourier-transform/#gelfand, viewed 16 October 2017) · In particular Exercise 2 • Course: Introduction to Lie Groups 1 Recap left-invariant Haar measures Theorem 1 (Haar).