Parasites of Limpkins, Aramus Guarauna, in Florida

Total Page:16

File Type:pdf, Size:1020Kb

Parasites of Limpkins, Aramus Guarauna, in Florida 140 PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY in Mexico. Voucher specimens are deposited in ucation Director, CEDO, for providing the os- USNM Helm. Coll. No. 77184. prey carcass. Thanks are expressed to Dr. Peggy Turk, Ed- Proc. Helminthol. Soc. Wash. 52(1), 1985, pp. 140-142 Research Note Parasites of Limpkins, Aramus guarauna, in Florida JOSEPH A. CONTI,' DONALD J. FORRESTER,' AND STEPHEN A. NESBirr2 1 College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610 and 2 Florida Game and Fresh Water Fish Commission, Wildlife Research Laboratory, Gainesville, Florida 32601 The limpkin, Aramus guarauna (L.), is a me- habits of limpkins have been well studied, very dium-sized long-legged wading bird of the order little is known about their parasites. The present Gruiformes (cranes, rails, gallinules, coots, etc.) report concerns the parasites of limpkins from and is the sole member of the family Aramidae. central Florida. It is limited to freshwater habitats primarily in Fifteen limpkins were examined. Most (13 Florida and southeastern Georgia in the U.S.A. adults and one hatchling) were collected from (American Ornithologists' Union, 1957, Check- October 1975 to February 1976 at Rodman Pool list of North American Birds. 5th ed., Baltimore). in the Oklawaha River, Marion County, Florida. Limpkins feed primarily on apple snails (Po- One additional adult was collected in February macea paludosa (Say)), a behavior shared by the 1980 approximately 32 km south of this locality snail kite, Rostrhamus sociabilis Vieillot, al- at Alexander Springs (Lake County). though unlike snail kites they will take also other Nine adult birds and one hatchling were nec- foods such as lizards, frogs, insects, crustaceans, ropsied after having been frozen for up to 3 mo. mussels, and other snails (Snyder and Snyder, Blood samples were obtained from only four oth- 1969, Living Bird 8:177-223). Whereas the food er adult birds during banding and release oper- Table 1. Location, prevalence, and intensity of helminths of nine limpkins, Aramus guarauna, from the Okla- waha River, Florida. Intensity* Prevalence Parasite Mean Median Range Trematoda Cyclocoelidae (l)tt§ 100 429 34 2-3,554 Lyperorchis lyperorchis Travassos, 1921 (4)|| 56 4 1 1-12 Echinostomatidae (3)||§ 33 2 1 1-3 Prionosoma serratum (Diesing, 1850) Dietz, 1909 (3)|| 11 Nematoda Amidostomum acutum (Lundahl, 1848) 56 6 5 2-10 Seurat, 1918 (2)t Strongyloides sp. (3)t 33 59 75 25-78 * Intensity = no. parasites/infected host; values >0.5 rounded to next highest number. f Numbers in parentheses indicate site in host: (1) lungs, air sacs; (2) gizzard; (3) small intestine; (4) cloaca. $ New host record. § Immature forms. || New locality record. Copyright © 2011, The Helminthological Society of Washington OF WASHINGTON, VOLUME 52, NUMBER 1, JANUARY 1985 141 ations. Biting lice were collected from three of serve as intermediate hosts for both P. pricei and the ten birds examined at necropsy and from one P. serratum in their respective definitive hosts, additional limpkin that was captured, banded, but this remains to be determined. and released. Amidostomum acutum was more prevalent Procedures for collecting and studying para- than Strongyloides sp., but intensities of infec- sites followed those given by Forrester et al. (1974, tion were much lower. Both are pathogenic in Proc. Helminthol. Soc. Wash. 41:55-59). various avian hosts (Levine, 1980, Nematode Voucher specimens of each parasite have been Parasites of Domestic Animals and of Man, 2nd deposited in the U.S. National Parasite Collec- ed., Minneapolis), but the effects of these infec- tion (Beltsville, Maryland, Nos. 78046-78053). tions on limpkins are unknown. Because the life Four trematodes, two nematodes, and two bit- cycles of A. acutum and Strongyloides sp. are ing lice were recovered. No blood parasites were direct, limpkins probably acquire infections detected on blood films. through ingestion of infective stages or also by The biting lice, Laemobothrion cubense Kel- skin penetration of infective stages in the case of logg and Ferris, 1915 and Rallicola funebris Strongyloides sp. (Nitzsch, 1866), were found on two and three of Helminths have been reported from other 11 birds, respectively. Only one of the limpkins gruiform relatives of the limpkin in Florida, i.e., harbored specimens of both species. Both of these American coots (Fulica americana (Gmelin), lice have been reported previously from limpkins common moorhens (Gallinula chloropus (L.)), (Emerson, 1972, Checklist of the Mallophaga of purple gallinules (Porphyrula martinica (L.)), and North America (North of Mexico), Part IV. Bird wintering and resident sandhill cranes (Grus can- Host List, Dugway, Utah). adensis (L.)) (Kinsella, 1973, Proc. Helminthol. Table 1 lists the sites, prevalences, and inten- Soc. Wash. 40:240-242; Kinsella et al., 1973, sities of infection for the helminths collected from Am. Midi. Nat. 89:467-473; Forrester et al., nine limpkins originating from the Oklawaha 1974, op. cit.; Forrester et al., 1975, J. Parasitol. River. A tenth bird from Alexander Springs was 61:547-548). Limpkins appear to have few hel- free of helminths and was not included in Table minths in common with their relatives, sharing 1 since it was collected from a different locality. only the nematode genera Amidostomum and All limpkins were infected with specimens of Strongyloides. The immature cyclocoelid trem- at least one species of helminth (range 1-4, x = atodes may represent the species that occur in 3, med. = 2). The total number of helminths per coots and gallinules (Cyclocoelum mutabile infected limpkin ranged from 10 to 3,586 (x = (Zeder, 1800) or C. oculeum Kossack, 1911) or 454, med. = 58); however, these values are perhaps the species in snail kites, Bothrigaster skewed upward because of a large number (3,554) variolaris (Fuhrmann, 1904) (Kinsella, 1973, op. of immature cyclocoelids in the hatchling. In- cit.; Kinsella et al., 1973, op. cit.; Travassos et tensity values did not exceed 83 specimens of al., 1969, op. cit; Sykes and Forrester, 1983, Fla. this trematode in any of the adult limpkins, of Field Nat. 11:111-116). Apple snails may be in- which all were infected. In fact, none of the other volved as intermediate hosts of the cyclocoelids limpkins had a total parasite count >165. Be- of limpkins and snail kites. Although our sample cause only immature specimens were recovered, size was small, it appears that limpkins have this suggests that the limpkin may be an abnor- fewer species of helminths (seven or eight) than mal host for this helminth. other gruiforms in Florida such as the American Only two specimens of Prionosoma serratum coot (17 species), common moorhen (17), purple were found in the intestine of one limpkin. Three gallinule (18), Florida sandhill crane (13), and other birds possessed immature forms of an echi- Greater sandhill crane (14) (Kinsella, 1973, op. nostome that may have been P. serratum. This cit.; Kinsella et al., 1973, op. cit.; Forrester et al., species was recovered from limpkins in Vene- 1974, op. cit.; Forrester et al., 1975, op. cit.). zuela, Brazil, and Cuba (Nasir and Diaz, 1972, This may result from the limpkin's more re- Riv. Parassitol. 33:245-276). A closely related stricted diet. species of trematode, P. pricei Perez Vigueras, The authors thank Dana Bryan for collecting 1944, was shown experimentally to infect snail the limpkin from Lake County, and T. L. How- kites in Cuba via apple snail intermediate hosts ard and P. P. Humphrey for assisting with the (Nasir and Diaz, 1972, op. cit.). Apple snails may necropsies. Special thanks are due K. C. Emerson Copyright © 2011, The Helminthological Society of Washington 142 PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY for identification of the lice. Supported in part Florida Pittman-Robertson Project W-41. Flor- by grant number 1270-G from the Florida Game ida Agricultural Experiment Stations Journal Se- and Fresh Water Fish Commission. A contri- ries No. 5633. bution of Federal Aid to Wildlife Restoration, Proc. Helminthol. Soc. Wash. 52(1), 1985, pp. 142-143 Research Note Toxascaris leonina (Nematoda: Ascarididae) from the Pronghorn Antelope, Antilocapra americana, in Wyoming R. C. BERGSTROM,1 N. KINGSTON,1 AND J. R. TALBOTT2 1 Division of Microbiology and Veterinary Medicine, University of Wyoming, Laramie, Wyoming 82071 and 2 Wyoming Game and Fish Commission, Warden, Kaycee, Wyoming Although the genera Toxocara Stiles, 1905 and Lengths of the female and male worms were near Toxascaris Leiper, 1907 are common in canines the middle of the range of Toxascaris as given and felines, only occasionally are they found in by Levine, 1980 (Nematode Parasites of Do- ruminants or other artiodactylids. John R. Tal- mestic Animals and of Man. Burgess Publishing bott, Game Warden, Wyoming Game and Fish Co., Minneapolis, Minnesota). However, the Commission, Lusk, Wyoming, killed a doe widths of both the female and male worms were pronghorn antelope, Antilocapra americana less than those given by Levine and other au- (Ord), in Niobrara County, Wyoming, Novem- thors. Most female worms had no eggs in the ber 3, 1981 because the animal was weak and uteri so there may be some question whether probably would have died within a short time. the females ever would have produced viable While completing a postmortem examination of ova. Dr. J. Ralph Lichtenfels, Animal Parasi- the doe, the warden noted a poor body condition, tology Institute, Agricultural Research Service, deterioration of bone marrow, and emaciation. USDA, Beltsville, Maryland, confirmed our Nematode worms were present in the posterior identification of the ascarids as Toxascaris leon- portion of the small intestine. He collected nearly ina (Linstow, 1902) Leiper, 1907. Lichtenfels a dozen live nematodes, put them in ethanol, noted that no previous record exists of Toxas- and submitted them to Dr. E. Tom Thorne, caris sp. in pronghorn antelope or in any other Wildlife Research Veterinarian with the Wyo- ruminant in the United States.
Recommended publications
  • A Snail Kite's Delight
    Marsh Trail - Photo by Arthur Jacoby A Snail Kite’s Delight Naturalist Observations of The Marsh Trail Impoundments By Bradley Rosendorf, Education and Outreach Associate A hike around the Marsh Trail impoundments provides opportunities for Refuge guests to observe a stunning array of unique Everglades wildlife. The Refuge is an ecological gem and one of the precious jewels of the National Wildlife Refuge System. On the Marsh Trail, visitors regularly observe species such as the American alligator, white- Bradley tailed deer, Everglade Snail Kite, Sandhill Crane, Wood Stork, Glossy Ibis, Limpkin, Purple Gallinule, Pileated Woodpecker, Great Egret, Great Blue Heron, Red- shouldered Hawk and Roseate Spoonbill. There seems to be a big increase in Roseate Spoonbill activity in the area this year! In the fall and winter months, Northern Harriers can be seen, and in the spring and summer, Swallow-tailed Sandhill Cranes - David Kendall Kites are observed. Bald Eagles can also be seen, but they are very elusive. Florida bobcats are sometimes seen stalking the water’s edge for a bird to catch for dinner. The Roseate Spoonbill - Bradley sunsets are a magical sight to behold – in the Real Everglades of Palm Beach County. Every hike on the Marsh Trail offers the possibility of a surprise. At the Refuge, people from all throughout the community unite to support wildlife conservation and be inspired in nature. The Marsh Trail impoundments include 7.6 miles of hiking trail as well as the LILA area – Loxahatchee Impoundment Research Assessment – where you can learn about tree islands and Everglades restoration collaborative research. While hiking through the Marsh Trail impoundments, you can experience an Everglades landscape and habitat that reflects the greater River of Grass ecosystem.
    [Show full text]
  • Merritt Island National Wildlife Refuge BIRD LIST
    Merrritt Island National Wildlife Refuge U.S. Fish & Wildlife Service P.O. Box 2683 Titusville, FL 32781 http://www.fws.gov/refuge/Merritt_Island 321/861 0669 Visitor Center Merritt Island U.S. Fish & Wildlife Service 1 800/344 WILD National Wildlife Refuge March 2019 Bird List photo: James Lyon Merritt Island National Wildlife Refuge, located just Seasonal Occurrences east of Titusville, shares a common boundary with the SP - Spring - March, April, May John F. Kennedy Space Center. Its coastal location, SU - Summer - June, July, August tropic-like climate, and wide variety of habitat types FA - Fall - September, October, November contribute to Merritt Island’s diverse bird population. WN - Winter - December, January, February The Florida Ornithological Society Records Committee lists 521 species of birds statewide. To date, 359 You may see some species outside the seasons indicated species have been identified on the refuge. on this checklist. This phenomenon is quite common for many birds. However, the checklist is designed to Of special interest are breeding populations of Bald indicate the general trend of migration and seasonal Eagles, Brown Pelicans, Roseate Spoonbills, Reddish abundance for each species and, therefore, does not Egrets, and Mottled Ducks. Spectacular migrations account for unusual occurrences. of passerine birds, especially warblers, occur during spring and fall. In winter tens of thousands of Abundance Designation waterfowl may be seen. Eight species of herons and C – Common - These birds are present in large egrets are commonly observed year-round. numbers, are widespread, and should be seen if you look in the correct habitat. Tips on Birding A good field guide and binoculars provide the basic U – Uncommon - These birds are present, but because tools useful in the observation and identification of of their low numbers, behavior, habitat, or distribution, birds.
    [Show full text]
  • Houde2009chap64.Pdf
    Cranes, rails, and allies (Gruiformes) Peter Houde of these features are subject to allometric scaling. Cranes Department of Biology, New Mexico State University, Box 30001 are exceptional migrators. While most rails are generally MSC 3AF, Las Cruces, NM 88003-8001, USA ([email protected]) more sedentary, they are nevertheless good dispersers. Many have secondarily evolved P ightlessness aJ er col- onizing remote oceanic islands. Other members of the Abstract Grues are nonmigratory. 7 ey include the A nfoots and The cranes, rails, and allies (Order Gruiformes) form a mor- sungrebe (Heliornithidae), with three species in as many phologically eclectic group of bird families typifi ed by poor genera that are distributed pantropically and disjunctly. species diversity and disjunct distributions. Molecular data Finfoots are foot-propelled swimmers of rivers and lakes. indicate that Gruiformes is not a natural group, but that it 7 eir toes, like those of coots, are lobate rather than pal- includes a evolutionary clade of six “core gruiform” fam- mate. Adzebills (Aptornithidae) include two recently ilies (Suborder Grues) and a separate pair of closely related extinct species of P ightless, turkey-sized, rail-like birds families (Suborder Eurypygae). The basal split of Grues into from New Zealand. Other extant Grues resemble small rail-like and crane-like lineages (Ralloidea and Gruoidea, cranes or are morphologically intermediate between respectively) occurred sometime near the Mesozoic– cranes and rails, and are exclusively neotropical. 7 ey Cenozoic boundary (66 million years ago, Ma), possibly on include three species in one genus of forest-dwelling the southern continents. Interfamilial diversifi cation within trumpeters (Psophiidae) and the monotypic Limpkin each of the ralloids, gruoids, and Eurypygae occurred within (Aramidae) of both forested and open wetlands.
    [Show full text]
  • Securing the Survival of Snail Kites
    Securing the Survival of Snail Kites Reversing Current Trends Difficult aquatic plant management choices and tradeoffs are necessary to provide Kites with some minimal habitat and food source. Generally, Audubon supports efforts to suppress exotics and restore native plant and animal communities. However, no methods presently exist to eradicate exotic hydrilla or the snails it supports, nor to restore native plant communities and native apple snails to sustain Kites. Thus, the usual tactic of eliminating these exotic communities using herbicides— specifically in lakes such as Lake Tohopekaliga— now could undermine the Kite’s most important Snail Kite by Mike Tracy remaining habitat, food, and nesting areas. Until restoration efforts can successfully restore The endangered Snail Kite is in serious trouble. native habitat and improve water management in The species, formerly known as the Everglades Lake Okeechobee and the southern Everglades, Kite and whose entire U.S. population is found in managing the few areas in its northern range to Florida, has lost most of its habitat and its sustain enough hydrilla to meet Kite needs can act as traditional food, native apple snails. As a result, its an important bridge to secure the species’ survival. range and numbers are dropping dramatically. Therefore, Audubon believes that aquatic plant Known for its aerial grace and dramatic plumage, management, for now, should sustain enough the Kite is on course to be extirpated from Florida hydrilla to meet Kite needs, while maintaining other if current trends continue. essential functions of the lake, including navigation, fishing, and flood control to the extent practicable . Two broad problems appear to be plaguing the Kite.
    [Show full text]
  • Checklist of Helminth Parasites of Birds in Pakistan
    Bushra et al. Pakistan Journal of Parasitology 67; June 2019 CHECKLIST OF HELMINTH PARASITES OF BIRDS IN PAKISTAN Siyal Bushra1*, Aly Khan2, Sanjota Nirmal Das1 and Rafia Rehana Ghazi3 1Department of Zoology, University of Sindh, Jamshoro, Sindh, Pakistan 2CDRI, Pakistan Agricultural Research Council, University of Karachi campus, Karachi-75270, Pakistan 3Vertebrate Pest Control Laboratory, Southern Zone Agricultural Research Centre, Karachi University Campus, Karachi-75270 *Corresponding author: [email protected] Abstract: This article provides a list of helminths along with their hosts from Pakistan. The four major types of helminths are flukes (trematodes), round worms (nematodes) tapeworms (Cestodes) and thorny worms (acanthoephala). The majority of helminths infect the digestive tract but some may be recorded in other organs such as trachea, eye or brain. In the present checklist helminths along with their bird hosts is being provided. Keywords: Checklist, Trematodes, Cestodes, Nematodes, Acanthocephala, Birds, Pakistan. INTRODUCTION Birds are most fascinating creatures and amongst one of the valuable gift of Almighty Allah. Studies on avian helminth parasites are important both from economic and zoonotic point of view. Comparatively less research has been conducted on parasites of birds in Pakistan. Information about avian helminth parasites in Pakistan is meager. Several species have been described and published in local and foreign journals. A comprehensive list is presented here of trematodes, nematodes, cestodes and acanthocephalan along with their hosts from different localities of Pakistan. MATERIALS AND METHODS The present information has been collected from published work in local and foreign journals. Classification for the species is presented based on original descriptions. The data was collected from University of Karachi, University of Sindh, Jamshoro and University of Punjab, Lahore.
    [Show full text]
  • Merritt Island National Wildlife Refuge
    Merritt Island National Wildlife Refuge Comprehensive Conservation Plan U.S. Department of the Interior Fish and Wildlife Service Southeast Region August 2008 COMPREHENSIVE CONSERVATION PLAN MERRITT ISLAND NATIONAL WILDLIFE REFUGE Brevard and Volusia Counties, Florida U.S. Department of the Interior Fish and Wildlife Service Southeast Region Atlanta, Georgia August 2008 TABLE OF CONTENTS COMPREHENSIVE CONSERVATION PLAN EXECUTIVE SUMMARY ....................................................................................................................... 1 I. BACKGROUND ................................................................................................................................. 3 Introduction ................................................................................................................................... 3 Purpose and Need for the Plan .................................................................................................... 3 U.S. Fish And Wildlife Service ...................................................................................................... 4 National Wildlife Refuge System .................................................................................................. 4 Legal Policy Context ..................................................................................................................... 5 National Conservation Plans and Initiatives .................................................................................6 Relationship to State Partners .....................................................................................................
    [Show full text]
  • Florida Field Naturalist
    FLORIDA FIELD NATURALIST QUARTERLYPUBLICATION OF THE FLORIDA~RNITHOLOGICAL SOCIETY VOL.10, NO. 3 AUGUST1982 PAGES45-64 OBSERVATIONS ON LIMPKIN NESTING Little has been published on the nesting of the Limpkin (Aramus guarauna) (Bent 1926), although additional unpublished studies have recently been completed by Ingalls (1972) and Bryan (pers. comm.). I have long been interested in Limpkins, from the time I first heard one in 1938. In this paper I present observations on nesting that I have made since 1966, especially on Lake Pierce, Polk County, Florida. Limpkins are common in shallow water along the lake shore and along the edges of man-made lagoons and waterways nearby. The number of Limpkins has varied with water levels and food conditions. At times nearly all birds leave the lake. On 12-15 December 1969, for example, practically all Limpkins disappeared from Lake Pierce, and 23 showed up at the same time at Nalcrest, 14.4 km east of Lake Wales and 19.2 km south of Lake Pierce, an area where previously none had been present. In spring the birds reappeared along the shores of Lake Pierce. The Limpkin in the United States is primarily a Florida bird. It has been found north to South Carolina, in the Okefenokee Swamp, southern Georgia, and over much of peninsular Florida, west in the Florida panhandle rarely to Holmes, Jackson and Bay counties (Fig. 1).The region of greatest abundance is the central portion of the state (Sprunt 1954), north of the southern border of Lake Okeechobee. At Lake Pierce, where I made my observations, the Limpkin is fairly abundant.
    [Show full text]
  • Snail Kite Use of the Freshwater Marshes of South Florida
    SNAIL KITE USE OF THE FRESHWATER MARSHES OF SOUTH FLORIDA U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Delray Beach Station, P.O. Box 2077, Delray Beach, Florida 33444.1 Although the Snail Kite (Rostrhamus socinbilis plumbeus) once ranged widely throughout the freshwater marshes of Florida (Horn-ell 1932), in recent years habitat loss and modification have greatly reduced the species' range (Sprunt 1945, 1947, 1950, Stieg- litz and Thompson 1967, Sykes 1978, 1979). Kites in Florida were restricted principally to the headwaters of the St. Johns River, the Savannas, Lake Okeechobee, Loxaliatchee Slough, and the Ever- glades from 1967 through 1980, although other areas were used for short periods. In this paper I describe the area, and habitats'tlsed by kites bet~s-een1967 and 1980 and discuss their importance to maintenance of the kite population. Freshwater marshes of southern Florida (south of 28" N Latitude) were visited and the presence of Snail Kites observed each year from 1967 through 1980, and standardized censuses were conducted annually in November and December 19G9 through 1980, by methods explained elsewhere (Sykes 1979, 1982). I also used observations of contributors. I did not include in this report sightings of transient birds outside their principal use areas. Small marshes in the northern half of the Florida peninsula and in the Big Cypress Region of Collier County have not been included because of incomplete data. I deter- mined the extent of marsh habitat, past and present, from published sources and field investigations. I plotted former and extant marshes on Florida De- partment of Transportation general highway maps for the counties (scale 1:126720) and on U.S.
    [Show full text]
  • Limpkins Preyed on by Tegu Lizards at an Urban Park
    Revista Brasileira de Ornitologia 26(4): 231–233. SHORT-COMMUNICATIONARTICLE December 2018 Stilts do not protect against crawlers: Limpkins preyed on by Tegu Lizards at an urban park Juliana Vaz Hipolito1 & Ivan Sazima2,3 1 Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil. 2 Museu de Zoologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil. 3 Corresponding author: [email protected] Received on 25 September 2018. Accepted on 26 November 2018. ABSTRACT: Limpkin (Aramus guarauna) is a long-legged wading bird that forages mostly in wetlands in the open and occasionally under tree cover. Th is large bird is cautious and frequently scans its immediate environs when active or resting. Records of adult Limpkin predators are scarce and restricted to two very large aquatic reptiles, the American Alligator (Alligator mississippiensis) in North America and the Yellow Anaconda (Eunectes notaeus) in South America. Herein we report on two Limpkins killed and eaten by Black and White Tegus (Salvator merianae) at an urban park in southeastern Brazil. One of the Limpkins was still alive when we came across the predation event, whereas the other Limpkin seemed freshly killed. Th e fi rst Limpkin was already sprawled on the ground and occasionally opened the bill, vocalised hoarsely and fl apped the wings, while the Tegu repeatedly bit the bird on several body parts, which gradually weakened the bird. Th e Limpkin died when the Tegu bit hard the bird on the head and crushed the skull. In the second event the bird was bitten on several body parts and, thus, we assume that it was also killed by the Tegu that was eating the fresh corpse.
    [Show full text]
  • 1 Foraging Ecology of Breeding Snail Kites
    FORAGING ECOLOGY OF BREEDING SNAIL KITES (Rostrhamus sociabilis plumbeus) ON LAKE TOHOPEKALIGA, FLORIDA, USA By KYLE E. PIAS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2012 1 © 2012 Kyle E. Pias 2 To the kites 3 ACKNOWLEDGMENTS I would first like to thank the field technicians who participated in this project; they are far too often underappreciated, yet their role could not be more vital. Cari Sebright, Shannon Behmke, Megan Ford, Nick Belfry, Carley Jennings, Jeremy Wood, and Emily Butler all spent untold and underpaid hours on airboats watching snail kites, and the project could not have been completed without them. I cannot adequately express my gratitude to my advisor, Wiley Kitchens. He has been a constant supporting force throughout this project. His wisdom and guidance have been invaluable as has his confidence in my abilities to move forward on my own. I have grown immensely as an ecologist because of my time with him and I cannot thank him enough. My committee members Joan Morrison and Rob Fletcher were incredible throughout the process. Joan Morrison’s support and guidance started me down the path of conservation biology when I was a freshman at Trinity College and she once again lent me her knowledge and experience with this project. Rob Fletcher was an amazing source of information and guidance and I would have floundered through much of the analyses without his help. I need to thank the agencies and agency personnel who provided assistance and funding for this work; the United States Fish and Wildlife Service and the Florida Fish and Wildlife Conservation Commission.
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)“ Verfasserin Kerstin Liesinger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 442 Studienrichtung lt. Studienblatt: Diplomstudium Anthropologie Betreuerin / Betreuer: Univ.-Doz. Mag. Dr. Julia Walochnik Contents 1 ABBREVIATIONS ......................................................................................................................... 7 2 INTRODUCTION ........................................................................................................................... 9 2.1 History ..................................................................................................................................... 9 2.1.1 History of helminths ........................................................................................................ 9 2.1.2 History of trematodes .................................................................................................... 11 2.1.2.1 Fasciolidae ................................................................................................................. 12 2.1.2.2 Paramphistomidae ..................................................................................................... 13 2.1.2.3 Dicrocoeliidae ........................................................................................................... 14 2.1.3 Nomenclature ...............................................................................................................
    [Show full text]
  • Food of the Limpkin 11
    Food of the Limpkin 11 Changes in drainage would not have brought about the complete extirpation of this large heronry so soon but in addition to depletion of the food supply the birds suffered persecution from unscrupulous hunters. Men and boys used to go to the nesting site on Sundays and shoot herons for sport, never eating any of them, although from a few they cut the wings to be used in dusting shelves. Some of the hunters would shoot as many as twenty-five herons in one day. Even such persecution might not have wiped out the heronry entirely, for the inhabitants were not bent on getting rid of the birds, but the felling of the big cottonwoods in which they had made their nests year after year put an end to what had been, so far as we know, the largest heronry in the interior of the state, STATE UNIVERSITY, BOWLING GREEN, OHIO. FOOD OF THE LIMPKIN BY CLARENCE COTTAM Because of its peculiar distribution and unique feeding habits, the Limpkin (Aramus p&us p&us) is one of the most interesting of North American birds. In habits it seems to partake somewhat of the characteristics of both the rail and the heron. Like the rail, it runs rapidly and stealthily on the damp ground and frequents the borders of wooded streams and swamps; like the heron, it perches in trees. In distribution the bird is restricted to the Okefenokee Swamp in southern Georgia and to Florida. Over much of its range it is absent or rare and is common only locally where the food and environment are to its liking.
    [Show full text]