ATINER's Conference Paper Series ENGEDU2017-2333
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gnc 2021 Abstract Book
GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
HISPASAT Renews Designations of Its Satellite Fleet
Communications management HISPASAT renews designations of its satellite fleet The operator seeks to provide more precise and direct information through the designations used for its satellite system. All satellites will use Hispasat as their primary name, to which complementary information will be added in reference to each satellite’s orbital position and order of arrival. Madrid, 1 March 2016.- Spanish satellite communications operator HISPASAT has defined a new designation system for its satellite fleet. The change comes as a response to the Group’s growing number of satellites and orbital positions and reflects efforts to maintain designation coherency. The company seeks to establish a logical method to automate future satellite designations and provide informative content regarding satellites’ position and age and, therefore, has established the following system: all satellites will use Hispasat as their primary name, to which complementary information will be added in reference to each satellite’s orbital position and their order of arrival. Hence, when a satellite changes its location, its designation will also change, adapting it to the satellite’s new orbital position. In establishing HISPASATt’s new satellite designations, consideration has been given to the satellites that have already completed their useful life cycle and, therefore, been deorbited, such that numbering system will be linked to the history of the company’s satellites. The Amazonas satellites will keep their designation Excluded from this system will be satellites located at 61º West, which will keep the name Amazonas, since they are fully established on the market and well-known by all of the actors in the sector. -
Dark Matter and Background Light
Dark Matter and Background Light J.M. Overduin Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. 94305-4085 and P.S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 Abstract Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, arXiv:astro-ph/0407207v1 10 Jul 2004 ultraviolet, x-ray and γ-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended. Key words: Cosmology, Background radiation, Dark matter, Black holes, Higher-dimensional field theory PACS: 98.80.-k, 98.70.Vc, 95.35.+d, 04.70.Dy, 04.50.+h Email addresses: [email protected] (J.M. -
Hispasat Awards Gilat a Multi-Million Dollar Order for Cellular Backhaul Over Satellite to Extend Altan La Red Compartida Service to Rural Mexico
Hispasat Awards Gilat a Multi-Million Dollar Order for Cellular Backhaul over Satellite to Extend Altan La Red Compartida Service to Rural Mexico Over three million people of Mexico's underserved rural population will benefit from 4.5G LTE coverage, enjoying high-quality mobile broadband voice and data services Petah Tikva, Israel, December 21, 2020 -- Gilat Satellite Networks Ltd. (NASDAQ, TASE: GILT), a worldwide leader in satellite networking technology, solutions and services, announces that Hispasat awarded Gilat a multi-million dollar order to expand the existing SkyEdge II-c platform that Hispasat operates in Mexico and procure Capricorn VSATs for cellular backhaul (CBH) over satellite. Hispasat will use Gilat technology to extend the service of Altan La Red Compartida, the shared telecommunications network in Mexico, to over three million people in Mexico. Mexico's underserved rural population will benefit from 4.5G LTE coverage enjoying high-quality mobile broadband voice and data services. Altan is committed to promoting the vision of more and better-connected residents in Mexico. Due to difficult terrain, laying out land-based infrastructure is unfeasible or would require exorbitant costs. Therefore, satellite backhauling is the preferred method to provide fast coverage to the unserved and underserved population in Mexico, in regions where telecommunications can be crucial to open new opportunities for economic and social development. Gilat's SkyEdge II-c platform with its flagship VSAT, Capricorn, over Hispasat's Ka-band Amazonas 5 satellite, provides a most reliable quick solution to meet Altan's demanding requirements. Gilat's CBH platform provides a user experience similar to terrestrial technologies enabling MNOs to expand high-quality coverage to underserved areas of Mexico. -
Quarterly Launch Report
Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters. 4th Quarter 1996 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 4TH QUARTER REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. -
TRANSFORMATION in the SATELLITE SECTOR: DISRUPTION and INNOVATION Conference Director: Antonio Abad / Secretary: Cristina Perez Cantó
HISPASAT’S 9TH MEETING ON SPATIAL TELECOMMUNICATIONS TRANSFORMATION IN THE SATELLITE SECTOR: DISRUPTION AND INNOVATION Conference Director: Antonio Abad / Secretary: Cristina Perez Cantó JUNE 28 10:00 OPENING CEREMONY Ms. Elena Pisonero, President, HISPASAT Ms. Pilar Platero, President, SEPI 10:30 SESSION 1 – INNOVATION IN THE SPANISH SPATIAL SECTOR Moderator: Juan Carlos Cortés, Director of European Programmes, Space and Technological Returns, CDTI • José Guillamón, Director of Space Systems, Airbus D&S Spain • Javier Martí, President and CEO,Das Photonics • Eduardo Bellido, CEO, Thales Alenia Space Spain • Luis Gómez, CEO, Alter Technology 12:00 SESSION 2 – NEW MODELS IN SATELLITE CONSTRUCTION: SMALLER, LARGER, MORE FLEXIBLE? Moderator: Xavier Lobao, Head of the Future Projects Division, European Space Research and Technology Centre of the European Space Agency (ESA-ESTEC) • Dario Zamarian, President, Space Systems Loral (SSL) • Daniel Routier, VP Sales, Telecommunication Satellites & Orbital Systems,Airbus D&S • Amer Khouri, VP Commercial Satellite Business, Orbital ATK, Inc. • Guy Beutelschies, VP General Manager, Commercial Civil Space, Lockheed Martin 15:00 SESSION 3 – INNOVATION TO CHANGE THE MODEL IN SPATIAL TELECOMMUNICATIONS Moderator: Antonio Abad, Chief Technical and Operations Officer, HISPASAT • Thomas Reinartz, Head of Military UAS Programs and Sales, Airbus A3 • Wesley Wong, Satellite and Airborne Connectivity Solutions,Facebook • Daniel Holle, Product Manager, Project Loon, Google X • Guy Boullenger, VP Structuring Programs, -
Aerospace Engineering, Ships Design and Engineering, Marine Engineering (﷼)Code Title Original Price Our Price
Aerospace, Ships, Marine Engineering E-Books ﺒﺎﺪ. Aerospace Engineering, Ships Design and Engineering, Marine Engineering (﷼)code title Original Price Our Price 585-037 100 Boat Designs Reviewed - Design Commentaries by the Experts 10000 ﺮ Auth: Peter H. Spectre 1997 Wooden Boat Publications $24 ISBN: 0937822442 Pages: 276 839-016 100 Years of Radar 10000 ﻤﺎه ۹ Auth: Gaspare GALATI 2016 Springer $179 ISBN: 3319005839۸ Pages: 407 ﺪ ﺪ 734-004 1912-2012, 100 Years of Marine Corps Aviation - An Illustrated History 10000 ﻨﺪ ری Auth: Roxanne M. Kaufman Marine Corps (U 2012 Dept. of the Navy $115 ISBN: 0160893437 Pages: 338 ا ﻮ اAssessment of the Office of Naval Research's Marine Corps Science and Technology Program 10000 2000 519-06 ا ﻪ روزی ﻂ Auth: National Research Council (U. S.) 2000 National Academy Press $25 ISBN: 0309071380 Pages: 104 ۱ ﺤﺎ Mars Odyssey ۴ 10000 2001 795-002 ﻮﻣﺎن Auth: Christopher Russell 2004 Springer $119 ISBN: 9401569584 Pages: 159 ﯽ 633-035 2002 Assessment of the Office of Naval Research's Air and Surface Weapons Technology Program 10000 ا Auth: Comitee for the Revw of ONR's Air & 2002 National Academies $25 ISBN: 0309086019 Pages: 66 ﻦ Boats You Can Build (Scan) ۱۰۰۰ 10000 23 644-037 و Auth: Popular Mechanics Magazine 1950 POPULAR MECHANICS PR $44 ISBN: Pages: 190 ن Best Aviation Web Sites ۲۶ 10000 300 554-01 ISBN: 0071348352 Pages: 340 24$ ا Auth: John Allen Merry Merry 2000 McGrawHill ﻮ 929-001 30th International Symposium on Shock Waves 1 - ISSW30, Volume 1 10000 ﺮم ISBN: 9783319462110 Pages: -
Conceptual Framework for a Rapid Space Launch Capability By
Conceptual Framework for a Rapid Space Launch Capability by Phillip C. Reid B.A. in Physics, Astro-geophysics, August 1986, University of Colorado, Boulder M.A.S. in Architecture-based Enterprise Systems Engineering, August 2012, University of California, San Diego A Praxis submitted to The Faculty of The School of Engineering and Applied Science of The George Washington University in partial satisfaction of the requirements for the degree of Doctor of Engineering August 31, 2018 Praxis directed by Ali Jarvandi Adjunct Professor of Engineering Management and Applied Science Bentz Tozer Adjunct Professor of Engineering Management and Applied Science The School of Engineering and Applied Science of The George Washington University certifies that Phillip C. Reid has passed the Final Examination for the degree of Doctor of Engineering as of June 28, 2018. This is the final and approved form of the praxis. Conceptual Framework for a Rapid Space Launch Capability Phillip C. Reid Praxis Research Committee: Ali Jarvandi, Adjunct Professor of Engineering and Applied Science, Praxis Co-Director Bentz Tozer, Adjunct Professor of Engineering and Applied Science, Praxis Co-Director Amirhossein Etemadi, Assistant Professor of Engineering and Applied Science, Committee Member Ebrahim Malalla, Visiting Associate Professor of Engineering and Applied Science, Committee Member John G. Keller, Ph.D., Senior Aerospace Engineer, Phantom Works, The Boeing Company, Cutting Edge Communications, Committee Member ii © Copyright 2018 by Phillip C. Reid All rights reserved iii Dedication TO MY WIFE and DAUGHTER Susanne and Jane, for all of their love, encouragement, and enduring patience throughout this journey IN DEDICATION TO MY PARENTS and LITTLE BROTHER Who were always a great inspiration in my endeavors, but passed away during this journey, yet got to see it through to the end smiling down from heaven. -
Meeting Military Demands
Q&A XTAR Above: Artist’s rendering of XTAR. Right: XTAR EUR SSL Highbay 4 XTAR: meeting military demands Satellite operator XTAR specialises in providing customised X-band communications services exclusively to US and Allied governments, in support of military, diplomatic and security communications requirements. The company is establishing itself well in the market and is focusing on plans for the future that involve the introduction of new services on X-band and also expansion of the company on the ground and in orbit. Helen Jameson had the pleasure of speaking to two of XTAR’s key players, Denis Curtin, COO; and Bill Schmidt, VP Government Services, about the company, the advantages it offers, the future and the realisation in government circles that they can no longer go it alone. Question: Can you please begin by tell- aged business based in Rockville, Maryland. load on HISDESAT’s SpainSat satellite. To- ing us more about XTAR? HISDESAT is owned by Hispasat, the Span- gether, they provide coverage from Denver, Denis Curtin: XTAR was founded in 2001 ish Ministry of Defence and Spanish aero- looking East, all the way around to Singa- and is a joint venture between Loral Space space companies. Our charter is to sell com- pore, so we have good coverage of Africa & Communications and HISDESAT, a Span- munications services to the US Government and the Middle East. We also have coverage ish company that was originally set up to get and allies. We have two satellites in orbit - of the East Coast of the US, all of the Atlan- into the X-band business. -
<> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A -
Juan Jesús García Chaparro. Chief Financial Officer at Hispasat Gerencia De Riesgos Y Seguros
Juan Jesús García Chaparro. Chief Financial officer at Hispasat gerencia de riesgos y seguros Juan Jesús García Chaparro. Chief Financial officer at Hispasat “Risk management has been key to reaching each of our milestones” Juan Jesús García Chaparro, Chief Financial Officer at HISPASAT, asserts that risk management has been a key tool in reaching each of the company’s milestones over the years. In this interview, the director explains how the company has demonstrated over the years that it is highly resilient to adverse circumstances, which it has satisfactorily overcome thanks to risks having been identified and analyzed in advance, contingency plans having been defined and given the insurance coverage being adequate and sufficient. Risk Management and Insurance ( hereinafter ‘GRyS’): HISPASAT is the Spanish communications satellite operator, leader in the distribution of content in Spanish and Portuguese. How has it assumed this position and what risks or threats has the company had to overcome on its journey? Juan Jesús García Chaparro (hereinafter ‘JGC’): The leadership position assumed by HISPASAT in Spanish and Portuguese-speaking markets is attributable to a long transformation and internationalization process. When it was founded in 1989, HISPASAT was a public company that was created by the Cabinet to provide a response to Spanish satellite communication needs. It is worth remembering that, at the time, telecommunications were still a public service. HISPASAT was created in order to serve as a driving force and catalyze Spanish industry in the field of aerospace. “The leadership in Spanish and Portuguese-speaking markets is attributable to a long transformation and internationalization process” Following the liberalization of telecom industries during the 1990s, HISPASAT gradually became a commercial organization that had to compete on the market with other operators and earn the trust of clients.