The Journal of Rheumatology Volume 74, No. Soluble TNF Receptors In

Total Page:16

File Type:pdf, Size:1020Kb

The Journal of Rheumatology Volume 74, No. Soluble TNF Receptors In The Journal of Rheumatology Volume 74, no. Differences between anti-tumor necrosis factor-alpha monoclonal antibodies and soluble TNF receptors in host defense impairment. Charles A Dinarello J Rheumatol 2005;74;40-47 http://www.jrheum.org/content/74/40 1. Sign up for TOCs and other alerts http://www.jrheum.org/alerts 2. Information on Subscriptions http://jrheum.com/faq 3. Information on permissions/orders of reprints http://jrheum.com/reprints_permissions The Journal of Rheumatology is a monthly international serial edited by Earl D. Silverman featuring research articles on clinical subjects from scientists working in rheumatology and related fields. Downloaded from www.jrheum.org on October 2, 2021 - Published by The Journal of Rheumatology Differences Between Anti-Tumor Necrosis Factor-α Monoclonal Antibodies and Soluble TNF Receptors in Host Defense Impairment CHARLES A. DINARELLO ABSTRACT. This review examines the differences in the incidence, spectrum, and mechanisms of activation of oppor- tunistic infections, such as Mycobacterium tuberculosis, in patients with rheumatic diseases treated with the soluble TNF p75 receptor etanercept compared to the 2 anti-TNF-α monoclonal antibodies, infliximab and adalimumab. (J Rheumatol 2005;32 Suppl 74:40-47) Key Indexing Terms: TUMOR NECROSIS FACTOR INFECTION MYCOBACTERIUM TUBERCULOSIS ETANERCEPT INFLIXIMAB RHEUMATIC DISEASES ADALIMUMAB INTRODUCTION receptors also can bind and neutralize TNF-β (lympho- Impairment in host defense against infection and can- toxin), which is produced by macrophages as well as T cer is a broad topic that includes various clinical and cells. Given the number of cytokines that are implicated in biological conditions that are either innate or acquired. host defense functions, the remarkable lesson from the use Both types of impairment, however, can result in simi- of TNF blockers in hundreds of thousands of patients lar clinical outcomes such as infection due to intracel- reinforces the importance of TNF in host defense. lular microorganisms and increased lymphoma, partic- However, of equal importance is the clinical finding that ularly Epstein-Barr virus. differences exist in the incidence and spectrum of infec- Similarities in the spectrum of infectious diseases in per- tions in patients treated with the soluble TNF p75 receptor sons born with defects in CD4+ T cell functions and those etanercept compared to either of the 2 anti-TNF-α mono- who lose CD4+ T cell numbers associated with infection clonal antibodies, infliximab or adalimumab. with HIV-1 are well documented. Although longterm In a recent review of the incidence of granulomatous immunosuppressive drug therapy in patients with organ infections reported to the US Food and Drug transplants is a source of epidemiologic data, in this Administration from 1998 to September, 2002, there review, there will be no discussion of impaired host defense were 239 per 100,000 infliximab-treated patients com- associated with immunosuppressive agents. The agents pared to 74 per 100,000 for etanercept-treated patients1. used to suppress the immune response in these patients are Mycobacterium tuberculosis infections occurred at rates 5 nonspecific, in that more than a single cytokine is affected. times greater for infliximab than for etanercept1.Of In patients receiving tumor necrosis factor (TNF) blocking these, the onset of M. tuberculosis reactivation occurred agents for chronic diseases such as rheumatoid arthritis in 72% of patients within 90 days of initiating infliximab (RA), ankylosing spondylitis (AS), psoriatic arthritis, or compared to 28% for etanercept1. In a correction to the psoriasis, the specificity of anti-TNF-α monoclonal anti- published analysis2, the number of patients in the USA body has important implications because only TNF-α or treated with infliximab was reduced from 233,000 to cytokines related to TNF-α activity are affected. 197,000, and the rate of M. tuberculosis infection associ- Although the soluble TNF receptors (etanercept, oner- ated with infliximab was 54 per 100,000 patients com- cept, pegsunercept, lenercept) share with anti-TNF-α mon- pared to 28 per 100,000 for etanercept. However, upon oclonal antibodies the ability to neutralize both extracellu- reanalysis of the reported cases, the rate of reactivation lar as well as membrane forms of TNF-α, these soluble of M. tuberculosis infections within the first 90 days of treatment was 95 per 100,000 patient-years for infliximab compared to 11 per 100,000 patient-years for etanercept2. From the Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado, USA. Therefore, these data continue to reveal a difference Supported by US National Institutes of Health grants AI-15614 (CAD) between M. tuberculosis infections associated with anti- and HL-68743 (CAD) and the Colorado Cancer Center. TNF-α monoclonal antibody and those associated with soluble TNF receptors. Dr. Dinarello serves on the speakers’ bureau for Amgen. Although there are no comparable studies of reactiva- C.A. Dinarello, MD. tion of M. tuberculosis infections in patients receiving adalimumab using comparable numbers of patient-years Address reprint requests to Dr. C.A. Dinarello, University of Colorado of treatment, there were 13 cases of tuberculosis in 2400 Health Sciences Center, 4200 East Ninth Ave., B168, Denver, CO 80262. treated patients in controlled studies of this antibody, Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved. 40 The Journal of Rheumatology 2005, Volume 32 Supplement 74 Downloaded from www.jrheum.org on October 2, 2021 - Published by The Journal of Rheumatology which resulted in a boxed warning added to the adali- cell is the phagocyte, most notably the neutrophil. These mumab label3. cells have the machinery to engulf the organism and kill Opportunistic infections associated with TNF blockers, it in the phagolysosome. Gram-positive bacteria such as particularly with anti-TNF-α monoclonal antibodies, are streptococci and staphylococci are examples of neu- often similar to infections observed in immunosuppressed trophil- and cell adhesion molecule-dependent host patients, particularly in HIV-1-infected patients. For exam- defense. In the case of macrophage intracellular microor- ple, about 50% of M. tuberculosis infections are extrapul- ganisms, the killing mechanisms of the infected monary in HIV-1 patients, and similar percentages have macrophage involves interferon-γ (IFN-γ) and nitric been reported for patients treated with TNF blockers3. oxide production. However, obligate intracellular organ- However, in the case of etanercept, the safety of this TNF isms such as M. tuberculosis, Listeria, Histoplasma, and blocker was evaluated in HIV-1 patients with known M. Salmonella can survive and replicate inside the tuberculosis infection being treated with anti-tuberculous macrophage by usurping killing. Most notably, cytokines therapy. Eight doses of etanercept were administered dur- such as TNF-α and IFN-γ increase the killing mecha- ing initiation of anti-tuberculous therapy, and improved nisms, and a balance is achieved whereby a microorgan- clinical responses were reported for patients receiving ism such as M. tuberculosis can survive inside a etanercept compared to those without etanercept4. macrophage. Further spread and overt disease is kept to Indeed, CD4+ T cell counts increased associated with a minimum by a competent immune system and the for- etanercept therapy. Other studies in patients with AS mation of granulomata. Reducing TNF-α activity being treated with infliximab or etanercept5,6 support the impairs the host’s mechanisms of killing intracellular concept that the mechanism of action of the monoclonal organisms by reducing the synergism of TNF-α plus antibody and the soluble TNF receptor are different and IFN-γ, which regulate nitric oxide production. In animal account for the differences in the clinical spectrum of dis- models of mycobacterial infections, anti-TNF-α prevents eases associated with impaired host defense. formation of granulomata. CYTOKINES DID NOT EVOLVE AS MEDIATORS LIMITED ACTION OF CYTOKINES DURING OF DISEASE INFECTION Prototypes of cytokines such as interleukin 1 (IL-1) or Cytokines act at several levels in combating infection. TNF-α and their respective signaling mechanisms can be First, cytokines such as TNF-α induce expression of found in insects; indeed, nuclear factor-κB and the signal- endothelial and cellular adhesion molecules to facilitate transducing domains of the mammalian IL-1 receptor are adherence of phagocytes to cell surfaces. This is an found in Drosophila7. With the use of anticytokine based important first step for emigration of phagocytes from therapies, there is little question that these and other the circulation into the site of infection. Next, increasing cytokines play an important role in disease. However, the production of local chemokines results in the move- proinflammatory cytokines did not evolve to harm, but ment of the phagocyte into infected tissue. By stimulating rather to benefit the host. Other cytokines such as IL-18 nitric oxide production by the phagocyte, cytokines pro- and IL-15, which also play a role in autoimmune diseases, vide the chemical agents for killing the microbe. similarly evolved as beneficial to the host, particularly in Cytokines such as IL-1 and TNF-α are expressed during terms of host defense to infection. Indeed, the use of this time
Recommended publications
  • Clinical Policy: Baricitinib (Olumiant) Reference Number: ERX.SPA.291 Effective Date: 07.24.18 Last Review Date: 11.18 Revision Log
    Clinical Policy: Baricitinib (Olumiant) Reference Number: ERX.SPA.291 Effective Date: 07.24.18 Last Review Date: 11.18 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Baricitinib (Olumiant®) is Janus kinase (JAK) inhibitor. FDA Approved Indication(s) Olumiant is indicated for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA) who have had an inadequate response to one or more tumor necrosis factor (TNF) antagonist therapies. Limitation(s) of use: Use of Olumiant in combination with other JAK inhibitors, biologic disease-modifying antirheumatic drugs (DMARDs), or with potent immunosuppressants such as azathioprine and cyclosporine is not recommended. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Envolve Pharmacy Solutions™ that Olumiant is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Rheumatoid Arthritis (must meet all): 1. Diagnosis of RA; 2. Prescribed by or in consultation with a rheumatologist; 3. Age ≥ 18 years; 4. Member meets one of the following (a or b): a. Failure of a ≥ 3 consecutive month trial of methotrexate (MTX) at up to maximally indicated doses, unless contraindicated or clinically significant adverse effects are experienced; b. If intolerance or contraindication to MTX (see Appendix D), failure of a ≥ 3 consecutive month trial of at least ONE conventional DMARD (e.g., sulfasalazine, leflunomide, hydroxychloroquine) at up to maximally indicated doses, unless contraindicated or clinically significant adverse effects are experienced; 5.
    [Show full text]
  • Immunosuppressant Drugs Therapy with COVID-19
    Immunosuppressant Drugs Therapy with COVID-19: Associated Risks, Drug-Drug Interactions & Contraindications Debjyoti Talukdar1, Diane Ignacio2, and Madan Mohan Gupta2 1Teerthanker Mahaveer University 2The University of the West Indies at St Augustine September 24, 2020 Abstract Immunosuppressant drugs like Etanercept, Mycophenolate mofetil, Sirolimus, Cyclosporine and Rituximab can weaken the immune system and make patients susceptible to SARS nCoV-2 virus. These drugs make immunocompromised persons more vulnerable to complications associated with COVID-19. Moreover, it can also increase the mortality and morbidity, as a weakened immune system can lead to longer duration of infection. This study discusses the guidelines on immunosuppressant drugs and its associated risk factors with COVID-19, issued by the U.S CDC (Centers for Disease Control and Prevention), WHO (World Health Organisation), U.S FDA (Food and Drug Administration) and other accredited global health organisa- tions. Moreover, it also includes information about pharmaceutical properties, mechanism of action, COVID-19 associated risk factors, adverse drug reactions, contraindications and drug-drug interactions. Our study will help government partners and international health organisations to better understand COVID-19 health risks associated with immunosuppressants. Increased public awareness about effective drug therapy for autoimmune diseases, cancer treatment, immunocompromised and organ transplant patients will help lower the mortality and morbidity associated with the disease amid COVID-19 pandemic. 1. INTRODUCTION As per the U.S Department of Health and Human Services and U.S FDA, immunosuppressant drugs can cause susceptibility to viruses leading to infection with increase in morbidity of the disease. It can cause severe risk of illness from COVID-19 due to a weakened immune system.
    [Show full text]
  • Benlysta® (Belimumab)
    UnitedHealthcare Pharmacy Clinical Pharmacy Programs Program Number 2021 P 1227-6 Program Prior Authorization/Notification Medication Benlysta® (belimumab)* *This program applies to the subcutaneous formulation of belimumab P&T Approval Date 9/2017, 9/2018, 9/2019, 9/2020, 2/2021, 7/2021 Effective Date 10/1/2021; Oxford only: 10/1/2021 1. Background: Benlysta® is a B-lymphocyte stimulator (BLyS)-specific inhibitor indicated for the treatment of patients aged 5 years and older with active, autoantibody-positive, systemic lupus erythematosus (SLE) who are receiving standard therapy and adult patients with active lupus nephritis who are receiving standard therapy. Limitations of Use: The efficacy of Benlysta has not been evaluated in patients with severe active central nervous system lupus. Benlysta has not been studied in combination with other biologics. Use of Benlysta is not recommended in these situations. 2. Coverage Criteria: A. Systemic Lupus Erythematosus 1. Initial Authorization a. Benlysta will be approved based on all of the following criteria: (1) Diagnosis of systemic lupus erythematosus -AND- (2) Laboratory testing has documented the presence of autoantibodies [e.g., ANA, Anti-dsDNA, Anti-Sm, Anti-Ro/SSA, Anti-La/SSB] -AND- (3) Patient is currently receiving standard immunosuppressive therapy [e.g., hydroxychloroquine, chloroquine, prednisone, azathioprine, methotrexate] -AND- (4) Patient does not have severe active central nervous system lupus -AND- (5) Patient is not receiving Benlysta in combination with either of the following: (a) Biologic DMARD [e.g., Enbrel (etanercept), Humira (adalimumab), Cimzia (certolizumab), Kineret (anakinra)] © 2021 UnitedHealthcare Services, Inc. 1 (b) Lupkynis (voclosporin) Authorization will be issued for 12 months.
    [Show full text]
  • Attachment: Extract from Clinical Evaluation: Etanercept
    AusPAR Attachment 2 Extract from the Clinical Evaluation Report for etanercept Proprietary Product Name: Erelzi Sponsor: Novartis Pharmaceuticals Australia Pty Ltd First round report: June 2017 Second round report: August 2017 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. · The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance) when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About AusPARs · An Australian Public Assessment Report (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. · AusPARs are prepared and published by the TGA. · An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations and extensions of indications. · An AusPAR is a static document; it provides information that relates to a submission at a particular point in time.
    [Show full text]
  • Heart Failure and Drug-Induced Lupus
    Unusual toxicities with TNF inhibition: Heart failure and drug-induced lupus J.J. Cush John J. Cush, MD, Chief, Rheumatology ABSTRACT demyelinating disease, cytopenias, auto- and Clinical Immunology, Presbyterian Serious and unexpected adverse events, immune disorders, and heart failure. Hospital of Dallas, Clinical Professor of such as heart failure and drug-induced Other essays in this volume address the Internal Medicine, The University of Texas lupus, have been reported in patients subject of infection (10), demyelination Southwestern Medical School, Dallas, Texas, USA. receiving TNF inhibitor therapy. These (11), and lymphoma (12). This review events generally are easily recogniz- will focus on heart failure and lupus- Please address correspondence to: John J. Cush, MD, Presbyterian Hospital able, although they cannot be predicted like disease, which are rarely seen in of Dallas, 8200 Walnut Hill Lane, Dallas, nor avoided, other than by drug avoid- association with TNF inhibitor therapy Texax 75231-4496, USA. ance altogether. Many patients have and are currently without explanation. Clin Exp Rheumatol 2004; 22 (Suppl. 35): great benefit from anti-TNF therapies. S141-S147. Their intelligent use requires a firm Sources of data © Copyright CLINICAL AND EXPERIMENTAL understanding of these rare toxicities, As a consequence of drug approval, RHEUMATOLOGY 2004. so as to minimize the morbidity associ- manufacturers have a responsibility to ated with their uncommon occurrence. collect safety data actively and report Key words: TNF inhibitors, conges- these data to the appropriate agencies. tive heart failure, drug-induced lupus, Introduction For example, in the USA a manufactur- rheumatoid arthritis. The introduction of biologic agents to er must submit periodic safety reports specifically inhibit the pro-inflammato- to the FDA twice yearly (March and ry cytokine, tumor necrosis factor (TNF), September).
    [Show full text]
  • New Biological Therapies: Introduction to the Basis of the Risk of Infection
    New biological therapies: introduction to the basis of the risk of infection Mario FERNÁNDEZ RUIZ, MD, PhD Unit of Infectious Diseases Hospital Universitario “12 de Octubre”, Madrid ESCMIDInstituto de Investigación eLibraryHospital “12 de Octubre” (i+12) © by author Transparency Declaration Over the last 24 months I have received honoraria for talks on behalf of • Astellas Pharma • Gillead Sciences • Roche • Sanofi • Qiagen Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Paul Ehrlich (1854-1915) • “side-chain” theory (1897) • receptor-ligand concept (1900) • “magic bullet” theory • foundation for specific chemotherapy (1906) • Nobel Prize in Physiology and Medicine (1908) (together with Metchnikoff) Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author 1981: B-1 antibody (tositumomab) anti-CD20 monoclonal antibody 1997: FDA approval of rituximab for the treatment of relapsed or refractory CD20-positive NHL 2001: FDA approval of imatinib for the treatment of chronic myelogenous leukemia Infections and biologicals: a real concern? (two-hour symposium): New biological therapies: introduction to the ESCMIDbasis of the risk of infection eLibrary © by author Functional classification of targeted (biological) agents • Agents targeting soluble immune effector molecules • Agents targeting cell surface receptors
    [Show full text]
  • BCMA-Targeted Immunotherapy for Multiple Myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2*
    Yu et al. Journal of Hematology & Oncology (2020) 13:125 https://doi.org/10.1186/s13045-020-00962-7 REVIEW Open Access BCMA-targeted immunotherapy for multiple myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2* Abstract B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development. Keywords: B cell maturation antigen, BCMA, Belantamab mafodotin, CAR-T, Antibody-drug conjugate, Bispecific T cell engager Introduction B cell maturation antigen (BCMA) Recent advances in novel therapeutics such as prote- BCMA is encoded by a 2.92-kb TNFRSF17 gene located asome inhibitors (PI) and immunomodulatory drugs on the short arm of chromosome 16 (16p13.13) and (IMiD) have significantly improved the treatment out- composed of 3 exons separated by 2 introns (Fig. 1). comes in patients with multiple myeloma (MM) [1–8]. BCMA is a 184 amino acid and 20.2-kDa type III trans- However, most MM patients eventually relapse due to membrane glycoprotein, with the extracellular N the development of drug resistance [9]. In addition, terminus containing a conserved motif of 6 cysteines many of the current popular target antigens, such as [18–21].
    [Show full text]
  • JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: a Focus on the Present and an Outlook on the Future
    biomolecules Review JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future 1, 2, , 3 1,4 Jacopo Angelini y , Rossella Talotta * y , Rossana Roncato , Giulia Fornasier , Giorgia Barbiero 1, Lisa Dal Cin 1, Serena Brancati 1 and Francesco Scaglione 5 1 Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20133 Milan, Italy; [email protected] (J.A.); [email protected] (G.F.); [email protected] (G.B.); [email protected] (L.D.C.); [email protected] (S.B.) 2 Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, 98100 Messina, Italy 3 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pordenone, 33081 Aviano, Italy; [email protected] 4 Pharmacy Unit, IRCCS-Burlo Garofolo di Trieste, 34137 Trieste, Italy 5 Head of Clinical Pharmacology and Toxicology Unit, Grande Ospedale Metropolitano Niguarda, Department of Oncology and Onco-Hematology, Director of Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan, 20162 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-2111; Fax: +39-090-293-5162 Co-first authors. y Received: 16 May 2020; Accepted: 1 July 2020; Published: 5 July 2020 Abstract: Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs.
    [Show full text]
  • A New Venue of TNF Targeting
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2018 doi:10.20944/preprints201804.0015.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 1442; doi:10.3390/ijms19051442 1 Review 2 A new venue of TNF targeting 3 Sophie Steeland1, Claude Libert2 and Roosmarijn E. Vandenbroucke3,* 4 1 Barriers in Inflammation, VIB Center for Inflammation Research, Ghent; Department of Biomedical Molecular 5 Science, Ghent University, Ghent Belgium; [email protected] 6 2 Mouse Genetics in Inflammation, VIB Center for Inflammation Research, Ghent; Department of Biomedical 7 Molecular Science, Ghent University, Ghent Belgium; [email protected] 8 3 Barriers in Inflammation, VIB Center for Inflammation Research, Ghent; Department of Biomedical Molecular 9 Science, Ghent University, Ghent Belgium; [email protected] 10 * Correspondence: [email protected]; Tel.: +32 9 331 35 87 11 Received: date; Accepted: date; Published: date 12 13 Abstract: The first FDA-approved drugs were small, chemically-manufactured and highly active 14 molecules with possible off-target effects. After this first successful wave of small drugs, biotechnology 15 allowed the development of protein-based medicines such as antibodies. Conventional antibodies bind 16 a specific protein and are becoming increasingly important in the therapeutic landscape. A very 17 prominent class of biologicals are the anti-TNF drugs that are applied in several inflammatory diseases 18 that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the 19 treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, 20 some of them directly associated with the inherent nature of this drug class such as immunogenicity, 21 whereas others are linked with their mechanism of action.
    [Show full text]
  • Diabetes Reduces Mesenchymal Stem Cells in Fracture Healing Through a Tnfα-Mediated Mechanism
    Diabetologia DOI 10.1007/s00125-014-3470-y ARTICLE Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism Kang I. Ko & Leila S. Coimbra & Chen Tian & Jazia Alblowi & Rayyan A. Kayal & Thomas A. Einhorn & LouisC.Gerstenfeld& Robert J. Pignolo & Dana T. Graves Received: 31 July 2014 /Accepted: 19 November 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract (Sca-1) antibodies in areas of new endochondral bone forma- Aims/hypothesis Diabetes interferes with bone formation and tion in the calluses. MSC apoptosis was measured by TUNEL impairs fracture healing, an important complication in humans assay and proliferation was measured by Ki67 antibody. In and animal models. The aim of this study was to examine the vitro apoptosis and proliferation were examined in C3H10T1/ impact of diabetes on mesenchymal stem cells (MSCs) during 2 and human-bone-marrow-derived MSCs following transfec- fracture repair. tion with FOXO1 small interfering (si)RNA. Methods Fracture of the long bones was induced in a Results Diabetes significantly increased TNFα levels and streptozotocin-induced type 1 diabetic mouse model with or reduced MSC numbers in new bone area. MSC numbers were without insulin or a specific TNFα inhibitor, pegsunercept. restored to normal levels with insulin or pegsunercept treat- MSCs were detected with cluster designation-271 (also ment. Inhibition of TNFα significantly reduced MSC loss by known as p75 neurotrophin receptor) or stem cell antigen-1 increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established Kang I. Ko and Leila S.
    [Show full text]
  • Enbrel) Reference Number: CP.PHAR.250 Effective Date: 08.16 Last Review Date: 02.21 Coding Implications Line of Business: Medicaid Revision Log
    Clinical Policy: Etanercept (Enbrel) Reference Number: CP.PHAR.250 Effective Date: 08.16 Last Review Date: 02.21 Coding Implications Line of Business: Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Etanercept (Enbrel®) is a tumor necrosis factor (TNF) blocker. FDA Approved Indication(s) Enbrel is indicated for the treatment of: • For reducing signs and symptoms, inducing major clinical response, inhibiting the progression of structural damage, and improving physical function in patients with moderately to severely active rheumatoid arthritis (RA). Enbrel can be initiated in combination with methotrexate (MTX) or used alone. • For reducing signs and symptoms of moderately to severely active polyarticular juvenile idiopathic arthritis (JIA) in patients ages 2 and older • For reducing signs and symptoms, inhibiting the progression of structural damage of active arthritis, and improving physical function in patients with psoriatic arthritis (PsA). Enbrel can be used with or without methotrexate. • For reducing signs and symptoms in patients with active ankylosing spondylitis (AS) • For the treatment of patients 4 years or older with chronic moderate to severe plaque psoriasis (PsO) who are candidates for systemic therapy or phototherapy Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Enbrel is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Ankylosing Spondylitis (must meet all): 1. Diagnosis of AS; 2. Prescribed by or in consultation with a rheumatologist; 3.
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]