The Garnet Line in Oxford County, Maine Pegmatites

Total Page:16

File Type:pdf, Size:1020Kb

The Garnet Line in Oxford County, Maine Pegmatites University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-18-2014 The Garnet Line in Oxford County, Maine Pegmatites. Myles Mathew Felch The University of New Orleans, [email protected] Myles M. Felch [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geology Commons Recommended Citation Felch, Myles Mathew and Felch, Myles M., "The Garnet Line in Oxford County, Maine Pegmatites." (2014). University of New Orleans Theses and Dissertations. 1915. https://scholarworks.uno.edu/td/1915 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Garnet Line in Oxford County, Maine Pegmatites. A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Earth and Environmental Sciences By Myles Felch B.A., University of Maine at Farmington, 2012 December 2014 © 2014, Myles M. Felch ii Acknowledgments I would first like to thank Jim Nizamoff, whom I contacted a few years ago and eventually introduced me to the MP2 group. With that said, I would like to thank Al, Skip and Karen for allowing me to further my education here at the University of New Orleans. Of course this would also not be possible without the help of my officemates Drew, John, Karen, Kim, Leah, Mark and Sasha. I also need to thank all the Maine pegmatite miners who have given me access to their property over the past few summers and all other involved in their projects: Jeff Morrison, Gary Freeman, Ray Sprague, Frank Perham and company and Mary Groves and her crew at the Poland Mining Camp. I want to thank my professors at the University of Maine at Farmington, Dr. Eastler, Dr. Gibson and Dr. Reusch. You were the first people to show me the beauty that lies beneath my feet. Thank you for inspiring me. For all involved at the Maine and Mineral and Gem Museum, past and present. Thank you for everything you have given me. What I admire most about you all is the sense of family you all bring to this amazing project. Thank you for making me feel at home, you guys and gals are the best. Lauren El-Hajj, thank you for everything… and I mean everything. Seriously though, I would have never made it through this without you. I wish you the best, with love always. Sam and Gavin, you are the best brothers and friends anyone could ask for. You both mean the world to me, thank you for all your support. Ultimately this one goes out to my parents, without them this would not be possible. You both have given me everything; I am so lucky to have parents like you. Words cannot describe my love for you both. Hats off to you. iii Table of Contents List of Figures ..............................................................................................................................................v List of Tables ................................................................................................................................................ix Abstract ..........................................................................................................................................................xi Introduction .................................................................................................................................................1 Pegmatite Petrogenesis..............................................................................................................1 The “garnet line” ...........................................................................................................................3 Garnets in pegmatites .................................................................................................................5 Geologic Background ..................................................................................................................7 Quarry Descriptions ..................................................................................................................................10 Mt. Mica ............................................................................................................................................10 Mt. Apatite .......................................................................................................................................16 Pulsifer ................................................................................................................................17 The-Hole-In-The-Ground .............................................................................................20 The-Hole-In-The-Ground prospect ..........................................................................24 The Bennett ....................................................................................................................................24 The Havey ........................................................................................................................................25 The Tamminen ..............................................................................................................................27 The Emmons ...................................................................................................................................29 Methods .........................................................................................................................................................31 Scanning Electron Microscope (SEM) ..................................................................................32 Electron Microprobe (EMP) .....................................................................................................33 Directly Coupled Plasma Mass Spectrometry (DCP) ......................................................35 Textural Descriptions ...............................................................................................................................36 Mt. Mica ............................................................................................................................................36 Mt. Apatite .......................................................................................................................................47 The Bennett ....................................................................................................................................49 The Emmons ...................................................................................................................................49 The Havey ........................................................................................................................................50 The Tamminen ..............................................................................................................................52 Results ............................................................................................................................................................53 Discussion .....................................................................................................................................................83 Garnet Line Paragenesis ............................................................................................................83 Pollucite Occurrence ...................................................................................................................88 Rare-Earth Element Phosphates ............................................................................................90 Tourmaline Rims at Mt. Mica ...................................................................................................91 Localized Replacement Textures in the Garnet Line at Mt. Mica ...............................94 Conclusions ..................................................................................................................................................95 References ....................................................................................................................................................96 Appendix .......................................................................................................................................................103 Vita ...................................................................................................................................................................184 iv List of Figures Figure 1: Map showing locations of the five pegmatite quarries in this thesis. Modified after Wise and Brown 2010 and Tomascak et al. 2005. .........................................7 Figure 2: Partial pegmatite cross section highlighting the area beneath garnet line (footwall side) and core portion. Lepidolite (Lpd), cleavelandite (Clv), spodumene (Spd). Red dotted line marks garnet line. ................................................................12
Recommended publications
  • Kosnarite Kzr2(PO4)3 C 2001-2005 Mineral Data Publishing, Version 1
    Kosnarite KZr2(PO4)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal, pseudocubic. Point Group: 32/m. As rhombohedral pseudocubic crystals, to 0.9 mm, with {1012} and tiny {0001}. Physical Properties: Cleavage: Perfect on {1012}. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 D(meas.) = 3.194(2) D(calc.) = 3.206 Optical Properties: Transparent to translucent. Color: Pale blue to blue-green, bluish gray, nearly colorless. Streak: White. Luster: Vitreous. Optical Class: Uniaxial (+). ω = 1.656(2) = 1.682(2) Cell Data: Space Group: R3c. a = 8.687(2) c = 23.877(7) Z = 6 X-ray Powder Pattern: Mt. Mica, Maine, USA. 4.329 (100), 3.806 (90), 2.928 (90), 6.41 (50), 4.679 (50), 2.502 (50), 1.903 (45) Chemistry: (1) (2) (3) P2O5 43.3 42.2 42.04 ZrO2 44.5 47.9 48.66 HfO2 0.5 0.9 FeO 0.2 < 0.1 MnO 1.0 < 0.1 Na2O 1.4 < 0.1 K2O 8.7 9.25 9.30 Rb2O 0.25 0.2 F 0.20 0.2 −O=F2 0.08 0.08 Total 99.97 100.57 100.00 (1) Mt. Mica, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.93Na0.08Rb0.01)Σ=1.02(Zr1.81Na0.15Mn0.07Fe0.01Hf0.01)Σ=2.05 [P1.02(O3.98F0.02)Σ=4.00]3. (2) Black Mountain, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.99Rb0.01)Σ=1.00(Zr1.96Hf0.02)Σ=1.98 [P1.00(O3.98F0.02)Σ=4.00]3.
    [Show full text]
  • Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
    materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Thirty-Seventh List of New Mineral Names. Part 1" A-L
    Thirty-seventh list of new mineral names. Part 1" A-L A. M. CLARK Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK AND V. D. C. DALTRYt Department of Geology and Mineralogy, University of Natal, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa THE present list is divided into two sections; the pegmatites at Mount Alluaiv, Lovozero section M-Z will follow in the next issue. Those Complex, Kola Peninsula, Russia. names representing valid species, accredited by the Na19(Ca,Mn)6(Ti,Nb)3Si26074C1.H20. Trigonal, IMA Commission on New Minerals and Mineral space group R3m, a 14.046, c 60.60 A, Z = 6. Names, are shown in bold type. Dmeas' 2.76, Dc~ac. 2.78 g/cm3, co 1.618, ~ 1.626. Named for the locality. Abenakiite-(Ce). A.M. McDonald, G.Y. Chat and Altisite. A.P. Khomyakov, G.N. Nechelyustov, G. J.D. Grice. 1994. Can. Min. 32, 843. Poudrette Ferraris and G. Ivalgi, 1994. Zap. Vses. Min. Quarry, Mont Saint-Hilaire, Quebec, Canada. Obschch., 123, 82 [Russian]. Frpm peralkaline Na26REE(SiO3)6(P04)6(C03)6(S02)O. Trigonal, pegmatites at Oleny Stream, SE Khibina alkaline a 16.018, c 19.761 A, Z = 3. Named after the massif, Kola Peninsula, Russia. Monoclinic, a Abenaki Indian tribe. 10.37, b 16.32, c 9.16 ,~, l~ 105.6 ~ Z= 2. Named Abswurmbachite. T. Reinecke, E. Tillmanns and for the chemical elements A1, Ti and Si. H.-J. Bernhardt, 1991. Neues Jahrb. Min. Abh., Ankangite. M. Xiong, Z.-S.
    [Show full text]
  • Kosnarite, L(Zrr(PO)R, a New Mineral from Mount Mica and Black Mountain, Oxford County, Maine
    American Mineralogist, Volume 78, pages 653-656, 1993 Kosnarite, l(Zrr(PO)r, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine Mrcnlnr- E. BnowNprnr,o M.S. 972, U.S. GeologicalSurvey, Box 25046,Denver FederalCenter, Denver, Colorado 80225, U.S.A. EucnNB E. Foonn M.S. 905, U.S. GeologicalSurvey, Box 25046,Denver FederalCenter, Denver, Colorado 80225, U.S.A. SrnprrnN J. Surr,nv, Tnrooonn Borrr.cnr-lv M.S. 973, U.S. GeologicalSurvey, Box 25046,Denver FederalCenter, Denver, Colorado 80225, U.S.A. Ansrucr Kosnarite, ideally KZrr(PO)r, has been identified as part of a late-stage,secondary phosphate mineral assemblagefrom the Mount Mica pegmatite at Paris, and from the Black Mountain pegmatite, Rumford, Oxford County, Maine. Kosnarite from Mount Mica occurs as pseudocubicrhombohedral crystals, as much as 0.9 mm in maximum dimension,that displaythe dominant { 102}form. Color rangesfrom pale blue to blue-greento nearly colorless.The mineral has a white streak, is transparent, has a vitreous luster,and is nonfluorescentin ultraviolet light. It has a hardnessof4.5, is brittle with a conchoidal fracture, and has perfect { 102} cleavage.Measured and calculated densitiesare D^3.194(2) and D" 3.206.Optically, this mineral is characterizedas uniaxial (+), with refractiveindices of N.: 1.656(2)and N. :1.682(2) and is nonpleochroic. Twinning was not observed. The mineral is hexagonal(rhombohedral), space group R3c with a : 8.687(2),c : 23.871(l) A,, v : 1560.4(8)fri, 7 :6. The six strongestdiffraction lines [d(A), hkl, I/ I"l from the Mount Mica occurrenceare 6.41,012,50;4.679,104, 50; 4.329, | 10, 100;3.806, I13, 90; 2.928,| 16, 90; 2.502,300,50.
    [Show full text]
  • The Maine Geologist
    The Maine Geologist NEWSLETTER OF THE GEOLOGICAL SOCIETY OF MAINE June 2018 Volume 44 Number 2 PRESIDENT’S MESSAGE We have earned an enjoyable Maine summer! think about how you might respond to her invitation This edition of The Maine Geologist is packed with in this Newsletter. reports of how busy we were this spring. The GSM Also in the Newsletter, you will find an update Spring Meeting at Unity College was a wonderful on the Anderson Fund Committee, which is excited success, with a full afternoon of student research about increasing the capacity of GSM to fund new presentations from eight schools across Maine. The initiatives in geoscience education in Maine. That abstracts are printed below for you to ponder at your committee has been working hard and will continue leisure. I marvel at how the curiosity of students and to meet over the summer. their advisors leads them to investigate not only I am especially grateful for the work of the distant places, but also their own neighborhoods. We Executive Council, who I have called upon more heard about geology from across four continents as than usual this spring. Sarah stepped up to run the well as from beneath the campus where we were Spring Meeting in my absence, which she did gathered. beautifully, Bruce has done a significant amount of I especially want to mention Alex Bloomer as an financial research related to the dues issue and the example of how geoscience education is happening Anderson Fund, and I have sent Amber scrambling in new ways. Alex is a student at Bangor High after web site upgrade information.
    [Show full text]
  • The J Oumal Of
    The Joumal of Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gem-a.info President: Professor A.T. Collins Vice-Presidents: N. W. Deeks, A.E. Farn, R.A. Howie, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, R.R. Harding, I. Mercer, J. Monnickendam, M.J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A. Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.G. Read, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West - D. M. Brady, Scottish - B. Jackson, South East - C.H. Winter, South West - R.M. Slater Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc, M.Phil., FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Green, FGA, DGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, Li Li Ping, FGA, DGA, M.A. Medniuk, FGA, DGA, M. Newton, B.Sc, D.PWL, C.J.E. Oldershaw, B.Sc. (Hans), FGA, DGA, H.L. Plumb, B.Sc, FGA, DGA, R.D.
    [Show full text]
  • Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-16-2014 Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine Kimberly T. Clark University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clark, Kimberly T., "Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine" (2014). University of New Orleans Theses and Dissertations. 1786. https://scholarworks.uno.edu/td/1786 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Earth and Environmental Science By Kimberly T. Clark B.S.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • Field Relations, Petrography and Provenance of Mafic Dikes, Western Maine David Gibson University of Maine at Farmington, [email protected]
    Bates College SCARAB New England Intercollegiate Geological Conference NEIGC 2017 Day Three: October 1 2017 Oct 1st, 2017 C2: Field Relations, Petrography and Provenance of Mafic Dikes, Western Maine David Gibson University of Maine at Farmington, [email protected] Donald Osthoff University of Maine at Farmington Chase Rerrick University of Maine at Farmington Follow this and additional works at: http://scarab.bates.edu/neigc2017 Part of the Geology Commons Recommended Citation Gibson, D., Osthoff, D., and Rerrick, C., 2017, Field Relations, Petrography and Provenance of Mafic Dikes, Western Maine in Johnson, B. and Eusden, J.D., ed., Guidebook for Field Trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, Bates College, p. 273-286. https://doi.org/10.26780/2017.001.0015 This Event is brought to you for free and open access by the Conferences and Events at SCARAB. It has been accepted for inclusion in New England Intercollegiate Geological Conference 2017 by an authorized administrator of SCARAB. For more information, please contact [email protected]. C2-1 FIELD RELATIONS, PETROGRAPHY AND PROVENANCE OF MAFIC DIKES, WESTERN MAINE. David Gibson [email protected], Donald Osthoff and Chase Rerrick. Department of Geology, University of Maine at Farmington, Farmington, Maine 04938. INTRODUCTION In his 1965 report on the Geology of the Bryant Pond quadrangle, Maine, C.V. Guidotti mapped some 65 mafic dikes within this field area. However, his rather enigmatic map (see Figure 2 of his report) served only to inspire a group of undergraduates and their advisor to further investigate these intrusions. Guidotti (1965) assigned a preliminary Triassic age to these intrusions but to date no accurate age determinations have been performed on these rocks.
    [Show full text]
  • Carboniferous Metamorphism on the North (Upper) Side of the Sebago Batholith
    University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1986 Carboniferous metamorphism on the north (upper) side of the Sebago Batholith Guidotti, C.V. Gibson, D. Lux, D.R. DeYoreo, J. Cheney, J.T. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Guidotti, C.V.; Gibson, D.; Lux, D.R.; DeYoreo, J.; and Cheney, J.T., "Carboniferous metamorphism on the north (upper) side of the Sebago Batholith" (1986). NEIGC Trips. 404. https://scholars.unh.edu/neigc_trips/404 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. TRIP C-4 m It£ NORTH ( UPPER ) SIDE Q£ IME. SEBAGO By C.V. Guldottl1, D. Gibson1, D.R. Lux1,0J. De Yoreo1, 2 and J.T. Cheney ( U n l v . of Maine, Orono, Maine. (2) Amherst College, Amherst, MA Until recently the high-grade metamorphism In western Maine was routinely accepted as Devonian In age. Initially, only a single Devonian event was assumed and Pankiwskyj (1965) appears to have been the first worker to tentatively suggest the existence of more than one Devonian metamorphism. Subsequently, Guldottl (1970) described explicitly at least three Devonian metamorphisms. The most recent overviews of the Devonian metamorphic events In central and western Maine have been given by Holdaway et al.
    [Show full text]
  • Gems and Minerals of Maine Pegmatites
    Gems and Minerals of Maine Pegmatites Carl A. Francis Granitic pegmatites in Maine have been collected, commercially mined, and scientifically investigated for two centuries. Feldspar is by far the most important commercial product, but it is the sporadic production of gemstones beginning in the 1820s and continuing to the present that sustains interest in exploring Maine's many pegmatites. The only other pegmatite district in North America with significant gem production is in San Diego County of southern California. In a review paper Wise and Francis (1992) using the scheme of Cerny (1982) classified Maine's pegmatites as "rare element" pegmatites and grouped them into two pegmatite "fields". The Brunswick field is located along the seacoast northeast of Portland. The Oxford field is inland northwest of Portland. A fault of regional significance separates the two terranes in which they are located. Both fields have been subdivided into clusters of pegmatites termed "series." The Brunswick field comprises four series of which the Topsham series is the most important and mineralogically interesting. It was the pioneering feldspar mining district in Maine. The Oxford field is much larger and comprises nine series. Cerny's model of pegmatite petrogenesis envisions a parent pluton of fertile granite surrounded by a fringe of daughter pegmatites with the pegmatites furthest from the pluton being the most enriched in rare elements. At least superficially the pegmatite series of the Oxford field corresponds to this model, whereas the Topsham series in the Brunswick field lacks an apparent parent. For this and other reasons the petrogenesis of Maine's pegmatites still cannot be considered well understood despite a century of study.
    [Show full text]