Department of Biological Sciences Redeemer's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungal Infections from Human and Animal Contact
Journal of Patient-Centered Research and Reviews Volume 4 Issue 2 Article 4 4-25-2017 Fungal Infections From Human and Animal Contact Dennis J. Baumgardner Follow this and additional works at: https://aurora.org/jpcrr Part of the Bacterial Infections and Mycoses Commons, Infectious Disease Commons, and the Skin and Connective Tissue Diseases Commons Recommended Citation Baumgardner DJ. Fungal infections from human and animal contact. J Patient Cent Res Rev. 2017;4:78-89. doi: 10.17294/2330-0698.1418 Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, and the patient experience. REVIEW Fungal Infections From Human and Animal Contact Dennis J. Baumgardner, MD Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, WI; Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI; Center for Urban Population Health, Milwaukee, WI Abstract Fungal infections in humans resulting from human or animal contact are relatively uncommon, but they include a significant proportion of dermatophyte infections. Some of the most commonly encountered diseases of the integument are dermatomycoses. Human or animal contact may be the source of all types of tinea infections, occasional candidal infections, and some other types of superficial or deep fungal infections. This narrative review focuses on the epidemiology, clinical features, diagnosis and treatment of anthropophilic dermatophyte infections primarily found in North America. -
Utility of Miconazole Therapy for Trichosporon Fungemia in Patients with Acute Leukemia
Advances in Microbiology, 2013, 3, 47-51 Published Online December 2013 (http://www.scirp.org/journal/aim) http://dx.doi.org/10.4236/aim.2013.38A008 Utility of Miconazole Therapy for Trichosporon Fungemia in Patients with Acute Leukemia Kazunori Nakase1,2*, Kei Suzuki2, Taiichi Kyo3, Yumiko Sugawara2, Shinichi Kageyama2, Naoyuki Katayama2 1Cancer Center, Mie University Hospital, Tsu, Japan 2Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan 3Fourth Department of Internal Medicine, Hiroshima Red Cross and Atomic-Bomb Survivors Hospital, Hiroshima, Japan Email: [email protected] Received October 15, 2013; revised November 15, 2013; accepted November 21, 2013 Copyright © 2013 Kazunori Nakase et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Invasive trichosporonosis is an extremely rare mycosis, but Trichosporon fungemia (TF) in patients with hematologic malignancies has been increasingly recognized to be a fulminant and highly lethal infection. Although the utility of az- ole therapy has been demonstrated in several observations, little is known about the efficacy of one of azoles, micona- zole (MCZ). To assess its therapeutic role, we retrospectively investigated 6 cases of TF in patients with acute leukemia receiving MCZ containing regimens. Successful outcome was obtained in 4 patients [MCZ + amphotericin B (AmB) in 2, MCZ only and MCZ + fluconazole (FLCZ) + AmB in one each], but not in 2 (MCZ + FLCZ + AmB and MCZ + FLCZ in one each). Although MCZ and AmB exhibited good in vitro activities against isolates from all patients, FLCZ had such finding from only one patient. -
Standard Methods for Fungal Brood Disease Research Métodos Estándar Para La Investigación De Enfermedades Fúngicas De La Cr
Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.13 REVIEW ARTICLE Standard methods for fungal brood disease research Annette Bruun Jensen1*, Kathrine Aronstein2, José Manuel Flores3, Svjetlana Vojvodic4, María 5 6 Alejandra Palacio and Marla Spivak 1Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1817 Frederiksberg C, Denmark. 2Honey Bee Research Unit, USDA-ARS, 2413 E. Hwy. 83, Weslaco, TX 78596, USA. 3Department of Zoology, University of Córdoba, Campus Universitario de Rabanales (Ed. C-1), 14071, Córdoba, Spain. 4Center for Insect Science, University of Arizona, 1041 E. Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA. 5Unidad Integrada INTA – Facultad de Ciencias Ags, Universidad Nacional de Mar del Plata, CC 276,7600 Balcarce, Argentina. 6Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA. Received 1 May 2012, accepted subject to revision 17 July 2012, accepted for publication 12 September 2012. *Corresponding author: Email: [email protected] Summary Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens. -
Trichosporon Beigelii Infection Presenting As White Piedra and Onychomycosis in the Same Patient
Trichosporon beigelii Infection Presenting as White Piedra and Onychomycosis in the Same Patient Lt Col Kathleen B. Elmer, USAF; COL Dirk M. Elston, MC, USA; COL Lester F. Libow, MC, USA Trichosporon beigelii is a fungal organism that causes white piedra and has occasionally been implicated as a nail pathogen. We describe a patient with both hair and nail changes associated with T beigelii. richosporon beigelii is a basidiomycetous yeast, phylogenetically similar to Cryptococcus.1 T T beigelii has been found on a variety of mammals and is present in soil, water, decaying plants, and animals.2 T beigelii is known to colonize normal human skin, as well as the respiratory, gas- trointestinal, and urinary tracts.3 It is the causative agent of white piedra, a superficial fungal infection of the hair shaft and also has been described as a rare cause of onychomycosis.4 T beigelii can cause endo- carditis and septicemia in immunocompromised hosts.5 We describe a healthy patient with both white piedra and T beigelii–induced onychomycosis. Case Report A 62-year-old healthy man who worked as a pool maintenance employee was evaluated for thickened, discolored thumb nails (Figure 1). He had been aware of progressive brown-to-black discoloration of the involved nails for 8 months. In addition, soft, light yellow-brown nodules were noted along the shafts of several axillary hairs (Figure 2). Microscopic analysis of the hairs revealed nodal concretions along the shafts (Figure 3). No pubic, scalp, eyebrow, eyelash, Figure 1. Onychomycotic thumb nail. or beard hair involvement was present. Cultures of thumb nail clippings on Sabouraud dextrose agar grew T beigelii and Candida parapsilosis. -
Oral Antifungals Month/Year of Review: July 2015 Date of Last
© Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 Class Update with New Drug Evaluation: Oral Antifungals Month/Year of Review: July 2015 Date of Last Review: March 2013 New Drug: isavuconazole (a.k.a. isavunconazonium sulfate) Brand Name (Manufacturer): Cresemba™ (Astellas Pharma US, Inc.) Current Status of PDL Class: See Appendix 1. Dossier Received: Yes1 Research Questions: Is there any new evidence of effectiveness or safety for oral antifungals since the last review that would change current PDL or prior authorization recommendations? Is there evidence of superior clinical cure rates or morbidity rates for invasive aspergillosis and invasive mucormycosis for isavuconazole over currently available oral antifungals? Is there evidence of superior safety or tolerability of isavuconazole over currently available oral antifungals? • Is there evidence of superior effectiveness or safety of isavuconazole for invasive aspergillosis and invasive mucormycosis in specific subpopulations? Conclusions: There is low level evidence that griseofulvin has lower mycological cure rates and higher relapse rates than terbinafine and itraconazole for adult 1 onychomycosis.2 There is high level evidence that terbinafine has more complete cure rates than itraconazole (55% vs. 26%) for adult onychomycosis caused by dermatophyte with similar discontinuation rates for both drugs.2 There is low -
Histopathology of Important Fungal Infections
Journal of Pathology of Nepal (2019) Vol. 9, 1490 - 1496 al Patholo Journal of linic gist C of of N n e o p ti a a l- u i 2 c 0 d o n s 1 s 0 a PATHOLOGY A m h t N a e K , p d of Nepal a l a M o R e d n i io ca it l A ib ss xh www.acpnepal.com oc g E iation Buildin Review Article Histopathology of important fungal infections – a summary Arnab Ghosh1, Dilasma Gharti Magar1, Sushma Thapa1, Niranjan Nayak2, OP Talwar1 1Department of Pathology, Manipal College of Medical Sciences, Pokhara, Nepal. 2Department of Microbiology, Manipal College of Medical Sciences , Pokhara, Nepal. ABSTRACT Keywords: Fungus; Fungal infections due to pathogenic or opportunistic fungi may be superficial, cutaneous, subcutaneous Mycosis; and systemic. With the upsurge of at risk population systemic fungal infections are increasingly common. Opportunistic; Diagnosis of fungal infections may include several modalities including histopathology of affected tissue Systemic which reveal the morphology of fungi and tissue reaction. Fungi can be in yeast and / or hyphae forms and tissue reactions may range from minimal to acute or chronic granulomatous inflammation. Different fungi should be differentiated from each other as well as bacteria on the basis of morphology and also clinical correlation. Special stains like GMS and PAS are helpful to identify fungi in tissue sections. INTRODUCTION Correspondence: Dr Arnab Ghosh, MD Fungal infections or mycoses may be caused by Department of Pathology, pathogenic fungi which infect healthy individuals or by Manipal College of Medical Sciences, Pokhara, Nepal. -
Safety Precautions for Working with Cryptococcus Neoformans
Safety Precautions for Working with Cryptococcus neoformans The basidiomycete fungus Cryptococcus neoformans is an invasive opportunistic pathogen of the central nervous system and the most frequent cause of fungal meningitis worldwide. Although Cryptococcus is a problem in the United States, it is significantly more prevalent and especially devastating in the developing world, such as sub-Saharan Africa, resulting in in more than 625,000 deaths per year worldwide. C. neoformans survives in the environment within soil, trees, and bird guano, where it can interact with wild animals or microbial predators, maintaining its virulence. Human infection is thought to be acquired by inhalation of desiccated yeast cells or spores from an environmental source. C. neoformans can colonize the host respiratory tract without producing any disease. Infection is typically asymptomatic, and it can be either cleared or enter a dormant, latent form. When host immunity is compromised, the dormant form can be reactivated and disseminate hematogenously to cause systemic infection. C. neoformans can infect or spread to any organ to cause localized infections involving the skin, eyes, myocardium, bones, joints, lungs, prostate gland, or urinary tract, in addition to its propensity to infect the central nervous systems. The following diseases and medications are risk factors for C. neoformans infection and are associated with at least some degree of immunosuppression: Ø HIV/AIDs (CD4 < 100cells/mm) Ø Corticosteroids or other immunosuppressive medications for cancer, chemotherapy, or organ transplants Ø Solid organ transplantations Ø Diabetes mellitus Ø Heart, lung, or liver disease Ø Pregnancy Even otherwise healthy, fully immunocompetent individuals can develop cryptococcosis, as may well be the case in a lab accident. -
Two Cases of Scalp White Piedra Caused by Trichosporon Ovoides
Case TTwowo ccasesases ooff sscalpcalp wwhitehite ppiedraiedra causedcaused byby Report TTrichosporonrichosporon ovoidesovoides SSwagatawagata AA.. TTambe,ambe, SS.. RRachitaachita DDhurat,hurat, CChayahaya A.A. KKumarumar1, PPreetireeti TThakare,hakare, NNitinitin LLade,ade, HHemangiemangi Jerajani,Jerajani, MMeenakshieenakshi MathurMathur 1 Departments of Dermatology ABSTRACT and 1Microbiology, Lokmanya Tilak Municipal Medical White piedra is a superÞ cial fungal infection of the hair shaft, caused by Trichosporon beigelii. College and General Hospital, Sion Mumbai - 400 022, India We report two cases of white piedra presenting as brown palpable nodules along the hair shaft with a fragility of scalp hairs. T. beigelii was demonstrated in hair culture of both the patients Address for correspondence: and T. ovoides as a species was conÞ rmed on carbohydrate assimilation test. The Þ rst patient Dr. Swagata Arvind Tambe, responded to oral itraconazole and topical ketoconazole, with a decrease in the palpability of 19/558, Udyan Housing nodules and fragility of scalp hairs at the end of two months. Society, Nehru Nagar, Kurla (East), Key words: White piedra, Carbohydrate assimilation test, Itraconazole, Trichosporon ovoides Mumbai – 400 024, India. E-mail: [email protected] DOI: 10.4103/0378-6323.51256 PMID: 19439885 IINTRODUCTIONNTRODUCTION with fragility for 3 and 2 months, respectively. Both the patients had a history of tying wet hairs after washing. White piedra is a superficial fungal infection of Other hairy parts of the body were not similarly the hair shaft, caused by Trichosporon beigelii, also affected in both. Their family members had no similar known as tinea nodosa, trichosporonosis nodosa involvement. Both had never visited southern parts of and trichomycosis nodularis.[1] Common areas of India or used oils excessively. -
Fungal Infections Fungi
Antifungal, Antiprotozoal, Anthelmintic Drugs Dr n. med. Marta Jóźwiak-Bębenista Department of Pharmacology Medical University of Lodz Fungal infections • also called mycoses; widespread in the population (e.g. „athlete's foot” or „thrush”) • become a more serious problem (immunocompromised patients – even fetal!) • are more difficult to treat than bacterial infections • therapy of fungal infections usually requires prolonged treatment! • opportunistic infections- Pneumocystis carinii Fungi Yeasts Moulds Higher Fungi 1 Clinically important fungi may be classified into: • yeasts (e.g. Cryptococcus neoformans) • yeast-like fungi that produce a structure resembling a mycelium (e.g. Candida albicans) • filamentous fungi with a true mycelium (e.g. Trichophyton spp., Microsporum spp., Epidermophyton spp., Tinea spp., Aspergillus fumigatus ) • „dimorphic” fungi that, depending on nutritional constraints, may grow as either yeasts or filamentous fungi (e.g. Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatides) Fungal infections Superficial (topical) Systemic („disseminated”) 1. cutaneous surfaces - skin, nails, hair 2. mucous membrane surfaces - oropharynx, vagina Fungal infections Superficial Systemic • Dermatomycoses - infections • Candidiasis of the skin, hair and nails; caused by • Cryptococcal meningitis Trichophyton • Pulmonary aspergillosis Microsporum Epidermophyton • Blastomycosis Tinea capitis (scalp) • Histoplasmosis Tinea cruris (groin) • Coccidiomycosis Tinea pedis (athlete's foot) • Paracoccidiomycosis Tinea corporis -
DIFLUCAN Capsule and IV
Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 Approved by BPOM: April 19, 2021 PT. PFIZER INDONESIA Local Product Document Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 DESCRIPTION Fluconazole is a bis-triazole: 2-(2,4-difluorophenyl)-1,3-bis (1H-1,2,4-triazol-1yl)-2 propanol. It has the following structural formula: N OH N N N CH2 C CH2 N N F F Fluconazole is a white to off-white crystalline powder which is sparingly soluble in water and saline. It has a molecular weight of 306.3. Diflucan capsules contain 50 mg and 150 mg of fluconazole and the following inactive ingredients: hard gelatin capsules (which may contain Blue 5 and other inert ingredients), lactose, corn starch, silicon dioxide, magnesium stearate and sodium lauryl sulfate. Diflucan for injection is an iso-osmotic, sterile, non-pyrogenic solution of fluconazole in a sodium chloride diluent. Each ml contains 2 mg of fluconazole and 9 mg of sodium chloride. The pH ranges from 4.0 to 8.6. Injection volumes of 100 ml are packaged in glass infusion vials. 2020-0059186 Page 1 of 19 Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 Approved by BPOM: April 19, 2021 PHARMACOLOGICAL PROPERTIES Pharmacodynamic Properties Pharmacotherapeutic group: Antimycotics for systemic use, triazole derivatives, ATC code J02AC01. Mode of Action Fluconazole, a triazole antifungal agent, is a potent and specific inhibitor of fungal sterol synthesis. Its primary mode of action is the inhibition of fungal cytochrome P-450-mediated 14-alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. -
Fungal Infections
FUNGAL INFECTIONS SUPERFICIAL MYCOSES DEEP MYCOSES MIXED MYCOSES • Subcutaneous mycoses : important infections • Mycologists and clinicians • Common tropical subcutaneous mycoses • Signs, symptoms, diagnostic methods, therapy • Identify the causative agent • Adequate treatment Clinical classification of Mycoses CUTANEOUS SUBCUTANEOUS OPPORTUNISTIC SYSTEMIC Superficial Chromoblastomycosis Aspergillosis Aspergillosis mycoses Sporotrichosis Candidosis Blastomycosis Tinea Mycetoma Cryptococcosis Candidosis Piedra (eumycotic) Geotrichosis Coccidioidomycosis Candidosis Phaeohyphomycosis Dermatophytosis Zygomycosis Histoplasmosis Fusariosis Cryptococcosis Trichosporonosis Geotrichosis Paracoccidioidomyc osis Zygomycosis Fusariosis Trichosporonosis Sporotrichosis • Deep / subcutaneous mycosis • Sporothrix schenckii • Saprophytic , I.P. : 8-30 days • Geographical distribution Clinical varieties (Sporotrichosis) Cutaneous • Lymphangitic or Pulmonary lymphocutaneous Renal Systemic • Fixed or endemic Bone • Mycetoma like Joint • Cellulitic Meninges Lymphangitic form (Sporotrichosis) • Commonest • Exposed sites • Dermal nodule pustule ulcer sporotrichotic chancre) (Sporotrichosis) (Sporotrichosis) • Draining lymphatic inflamed & swollen • Multiple nodules along lymphatics • New nodules - every few (Sporotrichosis) days • Thin purulent discharge • Chronic - regional lymph nodes swollen - break down • Primary lesion may heal spontaneously • General health - may not be affected (Sporotrichosis) (Sporotrichosis) Fixed/Endemic variety (Sporotrichosis) • -
Fungal Infections of the Central Nervous System in HIV-Negative Patients: Experience from a Tertiary Referral Center of South India
Original Article Fungal infections of the central nervous system in HIV-negative patients: Experience from a tertiary referral center of South India K. N. Ramesha, Mahesh P. Kate, Chandrasekhar Kesavadas1, V. V. Radhakrishnan2, S. Nair3, Sanjeev V. Thomas Departments of Neurology, 1Neuroradiology, 2Neuropatholgy and 3Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum-695 011, India Abstract Objective: To describe the clinical, radiological, and cerebrovascular fluid (CSF) findings and the outcome of microbiologically or histopathologically proven fungal infections of the central nervous system (CNS) in HIV-negative patients. Methodology and Results: We identified definite cases of CNS mycosis by screening the medical records of our institute for the period 2000–2008. The clinical and imaging details and the outcome were abstracted from the medical records and entered in a structured proforma. There were 12 patients with CNS mycosis (i.e., 2.7% of all CNS infections treated in this hospital); six (50%) had cryptococcal infection, three (25%) had mucormycosis, and two had unclassified fungal infection. Four (33%) of them had diabetes as a predisposing factor. The common presentations were meningoencephalitis (58%) and polycranial neuritis (41%). Magnetic resonance imaging revealed hydrocephalus in 41% and meningeal enhancement in 25%, as well as some unusual findings such as subdural hematoma in the bulbocervical region, carpeting lesion of the base of the skull, and enhancing lesion in the cerebellopontine angle. The CSF showed pleocytosis (66%), hypoglycorrhachia (83%), and elevated protein levels (100%). The diagnosis was confirmed by meningocortical biopsy (in three cases), paranasal sinus biopsy (in four cases), CSF culture (in three cases), India ink preparation (in four cases), or by cryptococcal polysaccharide antigen test (in three cases).