Diptera) in Delineating Ecological Classifications of Missouri Streams at Different Environmental Scales

Total Page:16

File Type:pdf, Size:1020Kb

Diptera) in Delineating Ecological Classifications of Missouri Streams at Different Environmental Scales Congruence between nutrient water quality parameters and Chironomidae (Diptera) in delineating ecological classifications of Missouri streams at different environmental scales. Kansas Biological Survey Report No. 159 Dec. 2009 by Barbara Hayford*, Donald Huggins†, Debra Baker†, and Michael Johnson‡ †Central Plains Center for BioAssessment Kansas Biological Survey University of Kansas, Lawrence, KS, U.S.A. *Department of Life Sciences Wayne State College, Wayne, NE, U.S.A. ‡Aquatic Ecosystems Analysis Laboratory John Muir Institute of the Environment University of California, Davis, CA, U.S.A. 1 SUMMARY 1. Large scale classifications such as nutrient ecoregions have been established in the United States to help regulate surface water resources. These classifications and their constituent classes are hypotheses which may be tested by establishing the strength of the classes to differentiate within class and between class variation. The purpose of our study was to test the strength of three different classification schemes at three different scales: landscape (nutrient ecoregion), watershed (hydrologic unit), and microhabitat (substrate) using Chironomidae community assemblage and metric data and nutrient water quality data. Furthermore, we tested for congruence of classes using nutrient water quality and chironomid community data for the three classification schemes in an attempt to link the biota to nutrient concentrations. 2. Historical data on chironomid communities were compiled from the 20 stream sites in Missouri over multiple years and seasons. Nutrient water quality data were also collected at these sites but under a different study. An analysis of variance was used to determine whether chironomid metrics and nutrient water quality parameters varied significantly between classes for each of the classification schemes. Chironomid community assemblages and metrics and nutrient water quality parameters were used to test the strength of each classification. A mantel test for congruence was used to determine how congruent the classes were for each classification scheme based on three data matrices: chironomid community assemblages; chironomid metrics; and nutrient water quality parameters. 3. The three classification schemes were robust enough to show significant variation between nutrient water quality concentrations, chironomid community assemblages, and chironomid metrics. The classifications based on the nutrient data were strong and the classifications based on the chironomid assemblage and metric data were weak, although comparable to classification strengths based on entire macroinvertebrate communities and fish communities for regional, watershed/basin, and substrate classes. 4. Despite relatively weak classification based on chironomid data, all data were able to separate out the different nutrient ecoregions. Variation from classes of watershed and basin that transcended nutrient ecoregions and from substrates at a very fine environmental filter were not strong enough to break up the grouping of nutrient ecoregions, and therefore were not responsible for the relatively weak classification strengths observed. Finally, the chironomid metric and assemblage data were significantly congruent with the nutrient data but were not strongly correlated indicating that nutrient and biological data can be combined under the nutrient ecoregion classification, but with some caution. Keywords: Nutrient ecoregions, classification strength, Chironomidae, mantel test, substrate, hydrologic units 2 Introduction Classifications are useful tools in aquatic ecology and biological assessment because they allow researchers to examine communities of aquatic organisms within naturally occurring regions at varying scales. Regional classification schemes have been useful in delineating communities of fish (Rohm et al., 1987; Whittier et al., 1988; Van Sickle and Hughes, 2000) and macroinvertebrates (Whittier et al., 1988; Rabeni and Doisy, 2000; Sandin and Johnson, 2000; Johnson, 2000; Mykra et al., 2004). However, tests of the strength of a priori classifications such as ecoregions have shown that some classes are weak, particularly between relatively similar ecoregions (Hawkins and Vinson, 2000; Gerritsen et al., 2000), but classes increased in strength when combining similar ecoregions and then comparing them to markedly different ecoregions (Gerritsen et al., 2000). It is likely that some classification schemes will be very useful for water resource managers to identify natural variation between classes; whereas other classifications will be weak due to within class stream heterogeneity (Hawkins and Vinson, 2000; Mykra et al., 2004). Nutrient ecoregions are a regional scale classification for use in managing U.S. surface waters for nutrient criteria (Gibson et al., 2000). Classes of nutrient regions were formed from aggregates of level III ecoregions (Omernik 1987) and were based on natural and anthropogenic features that affect nutrient loads (Gibson et al., 2000). Although formed for use in creating benchmarks for concentrations of total nitrogen, total phosphorus, chlorophyll a and turbidity, they may also prove useful in creating benchmarks for biocriteria; thus, establishing congruence between water quality parameters and community assemblage and biological metric data may provide supporting evidence for a causal link between variation in nutrient criteria and biological communities within the regulatory framework of nutrient ecoregions and nutrient benchmarks. Classifications are based on three hypotheses: one, that the class is a naturally occurring class rather than a convenience class (e.g. Wiley, 1981); two, that researchers accurately delineate the naturally occurring class (Omernik and Bailey, 1997); and three, that environmental filters working at the scale of the classification select for the communities present within the classification (Chessman and Royal, 2004). Environmental filters are factors that determine the distribution and abundance of species and consequently, the composition of biological communities. Environmental filters can be either physical (e.g. substrate) or chemical (e.g. nutrient concentrations). Assuming that the first hypothesis is correct, we can test the second and third hypotheses for nutrient ecoregions by looking for significant variation in Chironomidae (Diptera) and select nutrient water quality constituent values between regions and by testing the strength of the classes of nutrient ecoregions and of classes at different scales of environmental filters such as substrate and watershed. Chironomidae are the aquatic insect of focus in this study because they are an abundant, widespread, and heterogeneous group of flies whose larvae inhabit nearly every type of aquatic habitat (Oliver, 1971; Armitage et al., 1995) and they often are numerically dominant in aquatic ecosystems, for example, comprising upwards of 50% of the abundance in streams (Coffman and Ferrington, 1996). Chironomidae may also be numerically dominant in non-stressed to pristine streams or are co- dominant with taxa typically thought to be indicative of high quality habitat such as Ephemeroptera (e.g. Pringle and Ramirez, 1998; Burgherr et al., 2002; Ruegg and Robinson, 2004). Chironomidae are particularly important to study in the Midwestern United States with over 325 species listed for the Great Plains (Hayford and Bouchard, unpublished data). Finally, chironomids show differential preferences for different substrates (Francis and Kane, 1995; Hayford and Ferrington, 2006), which make them useful in testing the robustness of stream classifications based on substrate. The objective of our study is to determine the efficacy of nutrient ecoregions in Missouri in finding natural differences in nutrient water quality concentrations and biota, specifically Chironomidae, and to search for sources of variation within these large scale classifications by also 3 looking at one very fine scale classification, substrate, and one classification, hydrologic units, that crosses nutrient ecoregional boundaries. The goals of this study are to: 1. Test the strength of nutrient ecoregion classification for Missouri with chironomid community and selected water quality parameter data. 2. Search for sources of variation within the Missouri nutrient ecoregion classes by testing the strength of a classification at a very fine scale, substrate type. 3. Test the strength of a classification using HUC designations, a classification scheme unrelated to nutrient ecoregions. 4. Test for congruence of classes using water quality and chironomid community data for the three classification schemes in an attempt to link the biota to nutrient concentrations. Methods and materials Data set Historical data on chironomid communities and nutrient water quality parameters were compiled from the same stream sites in Missouri, but under two different studies. Reference stream nutrient and chironomid data were used to test the classifications of nutrient ecoregions, hydrologic units, and substrate. The Central Plains Center for BioAssessment gathered biological assessment data from state environmental agencies in EPA Region 7 into an historical database (1984-2002) of site macroinvertebrate data from possible reference sites. Only data from one state, Missouri, and one agency, the Missouri Department of Natural Resources were used in this study to reduce variability in sampling and laboratory methodology. Specimens were collected using a 500 µm x 500 µm mesh kick
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Distribution of Freshwater Midges in Relation to Air Temperature and Lake Depth
    J Paleolimnol (2006) 36:295-314 DOl 1O.1007/s10933-006-0014-6 A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth Erin M. Barley' Ian R. Walker' Joshua Kurek, Les C. Cwynar' Rolf W. Mathewes • Konrad Gajewski' Bruce P. Finney Received: 20 July 2005 I Accepted: 5 March 2006/Published online: 26 August 2006 © Springer Science+Business Media B.Y. 2006 Abstract Freshwater midges, consisting of Chiro- organic carbon, lichen woodland vegetation and sur- nomidae, Chaoboridae and Ceratopogonidae, were face area contributed significantly to explaining assessed as a biological proxy for palaeoclimate in midge distribution. Weighted averaging partial least eastern Beringia. The northwest North American squares (WA-PLS) was used to develop midge training set consists of midge assemblages and data inference models for mean July air temperature 2 for 17 environmental variables collected from 145 (R boot = 0.818, RMSEP = 1.46°C), and transformed 2 lakes in Alaska, British Columbia, Yukon, Northwest depth (1n (x+ l); R boot = 0.38, and RMSEP = 0.58). Territories, and the Canadian Arctic Islands. Canon- ical correspondence analyses (CCA) revealed that Key words Chironomidae : Transfer function . mean July air temperature, lake depth, arctic tundra Beringia' Air temperature . Lake depth' Canonical vegetation, alpine tundra vegetation, pH, dissolved correspondence analysis . Paleoclimate E. M. Barley· R. W. Mathewes Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A IS6 Introduction I. R. Walker Departments of Biology, and Earth and Environmental Sciences, University of British Columbia Okanagan, Palaeoecologists seeking to quantify past environ- Kelowna, BC, Canada VIV IV7 mental changes rely increasingly on transfer func- e-mail: [email protected] tions that make use of biological proxies (Battarbee J.
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Northern Italy) As Reconstructed by Fossil Chironomid Assemblages in Lago Di Lavarone (1100 M A.S.L.)
    Studi Trent. Sci. Nat., Acta Geol., 82 (2005): 299-308 ISSN 0392-0534 © Museo Tridentino di Scienze Naturali, Trento 2007 Lateglacial summer temperature in the Trentino area (Northern Italy) as reconstructed by fossil chironomid assemblages in Lago di Lavarone (1100 m a.s.l.) Oliver HEIRI1*, Maria-Letizia FILIPPI2 & André F. LOTTER1 1 Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Budapestlaan 4, CD 3584 Utrecht, The Netherlands 2 Sezione di Geologia, Museo Tridentino di Scienze Naturali, Via Calepina 14, 38100 Trento, Italy * Corresponding author e-mail: [email protected] SUMMARY - Lateglacial summer temperature in the Trentino area (Northern Italy) as reconstructed by fossil chironomid assemblages in Lago di Lavarone (1100 m a.s.l.) - Fossil chironomid assemblages and other aquatic invertebrate remains in the sediments of Lago di Lavarone were studied in order to reconstruct the summer temperature development from ca. 15,000 to 11,000 calibrated radiocarbon years BP. Analyses indicate assemblages adapted to low oxygen conditions during the entire sequence. Major changes in the chironomid fauna were inferred (1) at the beginning of the Lateglacial Interstadial, when taxa adapted to oligo-mesotrophic northern and mountain lakes disappeared from the record, (2) at the beginning of the Younger Dryas cold phase when chironomid concentrations declined, suggesting increased anoxia in the lake, and many taxa typical for temperate lowland lakes disappeared from the record, and (3) at the end of the Younger Dryas when most taxa adapted to temperate conditions returned. A chironomid-July air temperature transfer function from Central Europe was applied to the record and reconstructed July air temperatures of 10.5-10.8 °C before the Lateglacial Interstadial, 13.8-13.9 °C during most of the Interstadial with a slight increase to 15.3 °C just before the Younger Dryas, variable temperatures of 11.7-14.5 °C during the Younger Dryas and temperatures of 15.8-16.4 °C during the earliest Holocene.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Bibliograp Bibliography
    BIBLIOGRAPHY 9.1 BIBLIOGRAPHY 9 Adam, J.I & O.A. Sæther. 1999. Revision of the records for the southern United States genus Nilothauma Kieffer, 1921 (Diptera: (Diptera: Chironomidae). J. Ga. Ent. Soc. Chironomidae). Ent. scand. Suppl. 56: 1- 15:69-73. 107. Beck, W.M., Jr. & E.C. Beck. 1966. Chironomidae Ali, A. 1991. Perspectives on management of pest- (Diptera) of Florida - I. Pentaneurini (Tany- iferous Chironomidae (Diptera), an emerg- podinae). Bull. Fla. St. Mus. Biol. Sci. ing global problem. J. Am. Mosq. Control 10:305-379. Assoc. 7: 260-281. Beck, W.M., Jr., & E.C. Beck. 1970. The immature Armitage, P., P.S. Cranston & L.C.V. Pinder (eds). stages of some Chironomini (Chiro- 1995. The Chironomidae. Biology and nomidae). Q.J. Fla. Acad. Sci. 33:29-42. ecology of non-biting midges. Chapman & Bilyj, B. 1984. Descriptions of two new species of Hall, London. 572 pp. Tanypodinae (Diptera: Chironomidae) from Ashe, P. 1983. A catalogue of chironomid genera Southern Indian Lake, Canada. Can. J. Fish. and subgenera of the world including syn- Aquat. Sci. 41: 659-671. onyms (Diptera: Chironomidae). Ent. Bilyj, B. 1985. New placement of Tanypus pallens scand. Suppl. 17: 1-68. Coquillett, 1902 nec Larsia pallens (Coq.) Barton, D.R., D.R. Oliver & M.E. Dillon. 1993. sensu Roback 1971 (Diptera: Chironomi- The first Nearctic record of Stackelbergina dae) and redescription of the holotype. Can. Shilova and Zelentsov (Diptera: Chironomi- Ent. 117: 39-42. dae): Taxonomic and ecological observations. Bilyj, B. 1988. A taxonomic review of Guttipelopia Aquatic Insects 15: 57-63. (Diptera: Chironomidae).
    [Show full text]
  • This Table Contains a Taxonomic List of Benthic Invertebrates Collected from Streams in the Upper Mississippi River Basin Study
    This table contains a taxonomic list of benthic invertebrates collected from streams in the Upper Mississippi River Basin study unit as part of the USGS National Water Quality Assessemnt (NAWQA) Program. Invertebrates were collected from woody snags in selected streams from 1996-2004. Data Retreival occurred 26-JAN-06 11.10.25 AM from the USGS data warehouse (Taxonomic List Invert http://water.usgs.gov/nawqa/data). The data warehouse currently contains invertebrate data through 09/30/2002. Invertebrate taxa can include provisional and conditional identifications. For more information about invertebrate sample processing and taxonomic standards see, "Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory -- Processing, taxonomy, and quality control of benthic macroinvertebrate samples", at << http://nwql.usgs.gov/Public/pubs/OFR00-212.html >>. Data Retrieval Precaution: Extreme caution must be exercised when comparing taxonomic lists generated using different search criteria. This is because the number of samples represented by each taxa list will vary depending on the geographic criteria selected for the retrievals. In addition, species lists retrieved at different times using the same criteria may differ because: (1) the taxonomic nomenclature (names) were updated, and/or (2) new samples containing new taxa may Phylum Class Order Family Subfamily Tribe Genus Species Taxon Porifera Porifera Cnidaria Hydrozoa Hydroida Hydridae Hydridae Cnidaria Hydrozoa Hydroida Hydridae Hydra Hydra sp. Platyhelminthes Turbellaria Turbellaria Nematoda Nematoda Bryozoa Bryozoa Mollusca Gastropoda Gastropoda Mollusca Gastropoda Mesogastropoda Mesogastropoda Mollusca Gastropoda Mesogastropoda Viviparidae Campeloma Campeloma sp. Mollusca Gastropoda Mesogastropoda Viviparidae Viviparus Viviparus sp. Mollusca Gastropoda Mesogastropoda Hydrobiidae Hydrobiidae Mollusca Gastropoda Basommatophora Ancylidae Ancylidae Mollusca Gastropoda Basommatophora Ancylidae Ferrissia Ferrissia sp.
    [Show full text]
  • Abstracts Submitted for Presentation During The
    Abstracts submitted for presentation during the Compiled By Leonard C. Ferrington Jr. 17 July 2003 ABSTRACT FOR THE THIENEMANN HONORARY LECTURE THE ROLE OF CHROMOSOMES IN CHIRONOMID SYSTEMATICS, ECOLOGY AND PHYLOGENY WOLFGANG F. WUELKER* Chironomids have giant chromosomes with useful characters: different chromosome number, different combination of chromosome arms, number and position of nucleolar organizers, amount of heterochromatin, presence of puffs and Balbiani rings, banding pattern. For comparison of species, it is important that the bands or groups of bands can be homologized. Chromosomes are nearly independent of environmental factors, however they show variability in form of structural modifications and inversion polymorphism. Systematic aspects: New species of chironomids have sometimes been found on the basis of chromosomes, e.g. morphologically well defined "species" turned out to contain two or more karyotypes. Chromosome preparations were also sometimes declared as species holotypes. Moreover, chromosomes were helpful to find errors in previous investigations or to rearrange groups.- Nevertheless, where morphology and chromosomal data are not sufficient for species identification, additional results of electrophoresis of enzymes or hemoglobins as well as molecular-biological data were often helpful and necessary . Ecological, parasitological and zoogeographical aspects: An example of niche formation are the endemic Sergentia-species of the 1500 m deep Laike Baikal in Siberia. Some species are stenobathic and restricted to certain depth regions. The genetic sex of nematode-infested Chironomus was unresolved for a long time. External morphological characters were misleading, because parasitized midges have predominantly female characters. However, transfer of the parasites to species with sex-linked chromosomal characters (strains of Camptochironomus) could show that half of the parasitized midges are genetic males.
    [Show full text]