G C A T T A C G G C A T genes Perspective Micronuclei and Genome Chaos: Changing the System Inheritance Christine J. Ye 1,*, Zachary Sharpe 2, Sarah Alemara 2, Stephanie Mackenzie 2, Guo Liu 2, Batoul Abdallah 2, Steve Horne 2, Sarah Regan 2 and Henry H. Heng 2,3,* 1 The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA 2 Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201, USA; zasharpe@umflint.edu (Z.S.);
[email protected] (S.A.);
[email protected] (S.M.);
[email protected] (G.L.);
[email protected] (B.A.);
[email protected] (S.H.);
[email protected] (S.R.) 3 Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA * Correspondence:
[email protected] (C.J.Y.);
[email protected] (H.H.H.) Received: 3 March 2019; Accepted: 3 May 2019; Published: 13 May 2019 Abstract: Micronuclei research has regained its popularity due to the realization that genome chaos, a rapid and massive genome re-organization under stress, represents a major common mechanism for punctuated cancer evolution. The molecular link between micronuclei and chromothripsis (one subtype of genome chaos which has a selection advantage due to the limited local scales of chromosome re-organization), has recently become a hot topic, especially since the link between micronuclei and immune activation has been identified. Many diverse molecular mechanisms have been illustrated to explain the causative relationship between micronuclei and genome chaos.