KCNE1 Enhances Phosphatidylinositol 4,5-Bisphosphate (PIP2) Sensitivity of Iks to Modulate Channel Activity

Total Page:16

File Type:pdf, Size:1020Kb

KCNE1 Enhances Phosphatidylinositol 4,5-Bisphosphate (PIP2) Sensitivity of Iks to Modulate Channel Activity KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of IKs to modulate channel activity Yang Li, Mark A. Zaydman, Dick Wu1, Jingyi Shi, Michael Guan, Brett Virgin-Downey, and Jianmin Cui2 Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130 Edited by Richard W. Aldrich, University of Texas at Austin, Austin, TX, and approved April 18, 2011 (received for review January 17, 2011) Phosphatidylinositol 4,5-bisphosphate (PIP2) is necessary for the function of various ion channels. The potassium channel, IKs,is important for cardiac repolarization and requires PIP2 to activate. Here we show that the auxiliary subunit of IKs, KCNE1, increases PIP2 sensitivity 100-fold over channels formed by the pore-forming KCNQ1 subunits alone, which effectively amplifies current because native PIP2 levels in the membrane are insufficient to activate all KCNQ1 channels. A juxtamembranous site in the KCNE1 C terminus is a key structural determinant of PIP2 sensitivity. Long QT syn- drome associated mutations of this site lower PIP2 affinity, result- ing in reduced current. Application of exogenous PIP2 to these mutants restores wild-type channel activity. These results reveal a vital role of PIP2 for KCNE1 modulation of IKs channels that may represent a common mechanism of auxiliary subunit modula- tion of many ion channels. BIOPHYSICS AND CNQ1 α-subunits coassemble with KCNE1 β-subunits to COMPUTATIONAL BIOLOGY Kform the cardiac slow-delayed rectifier channel, IKs, which conducts a potassium current that is important for the termina- tion of the cardiac action potential. Although exogenous expres- sion of KCNQ1 alone is sufficient to produce a voltage-gated channel, coexpression of KCNE1 with KCNQ1 leads to changes in current properties to resemble the physiologically important A Fig. 1. KCNE1 slows the PIP2-dependent channel rundown. (A) KCNQ1 and cardiac IKs current (Fig. 1 ) (1, 2). These changes include in- KCNQ1 þ KCNE1 currents at various times after patch excision. Voltage was creased current amplitude, shift of the voltage dependence of ac- stepped from a holding potential of −80 to þ80 mV and then back to the tivation toward more positive potentials, slowed activation and holding potential. (B) Time dependence of current amplitude after patch deactivation kinetics, and suppressed inactivation, all of which excision. Normalized tail current amplitude at various time, It ∕I0, is plotted; are essential for the physiological role of IKs (3). After many years I0 is the tail current amplitude immediately following patch excision. KCNQ1 of investigation, it is still poorly understood how the KCNE1 (filled circles), n ¼ 9; KCNQ1 þ KCNE1 (open circles), n ¼ 12; KCNQ1þ KCNE1 þ 10 μMPIP2 (open squares), n ¼ 6; KCNQ1 þ KCNE1 coexpressed peptide exerts such a dramatic effect on the IKs current. Loss-of- with Ci-VSP (open diamonds), n ¼ 6. Solid lines are monoexponential fits function mutations in IKs lead to delayed cardiac cell repolariza- to data. Voltage was stepped from a holding potential of −80 mV to tion that manifests clinically as long QT (LQT) syndrome. þ80 mV for 5 s and then back to the holding potential for 5 s. (C) Time con- Patients with LQT syndrome are predisposed to ventricular stants of exponential fits and initial delay to current rundown. (D) Normal- arrhythmia and suffer from syncope and a high risk of sudden ized tail current amplitude at various times, It ∕I0, with KCNQ1: KCNE1 mRNA cardiac death. At present, the molecular mechanisms of disease ratio 1∶1 (open circles), n ¼ 12; 1∶0.05 (open diamonds), n ¼ 6; 1∶0.01 (open pathogenesis are still unknown for many LQT-associated muta- squares), n ¼ 6; 1∶0 (filled circles), n ¼ 9.(E) Time constants of exponential fits and initial delay to current rundown. In this and other figures, the data tions in IKs. are presented as mean Æ SEM. Phosphatidylinositol 4,5-bisphosphate (PIP2) is a minor acidic membrane lipid found primarily in the inner leaflet of the plasma currents using patch-clamp and two-electrode voltage-clamp membrane. PIP2 has been shown to be a necessary cofactor for a wide variety of ion channels, e.g., voltage-gated Kþ and Ca2þ techniques. Currents recorded from inside-out membrane channels, transient receptor potential channels, inward rectifying patches expressing KCNQ1 immediately and rapidly decayed fol- þ þ K channels, and epithelial Na channels (4). Recently, IKs has lowing patch excision such that channel activity was completely been shown to require PIP2 for channel activity, and several LQT- associated mutations located in KCNQ1 have been suggested to decrease the PIP2 affinity of IKs (5, 6). Here we provide evidence Author contributions: Y.L., M.A.Z., D.W., and J.C. designed research; Y.L., M.A.Z., J.S., M.G., and B.V.-D. performed research; Y.L. performed patch–clamp experiments in β Ks that KCNE1, as a -subunit, alters the function of I by modu- Fig. 1–5; M.A.Z. and M.G. performed voltage–clamp experiments in Fig. 4. J.S., M.G., lating the interaction between PIP2 and the heteromeric ion and B.V.-D. performed molecular biology; Y.L. analyzed data; and Y.L., M.A.Z., D.W., channel complex. Knowledge of the molecular mechanisms of and J.C. wrote the paper. channel modulation by KCNE1 is of great importance as at least The authors declare no conflict of interest. 36 LQT-associated mutations reside within KCNE1 (7–9). This article is a PNAS Direct Submission. 1Present address: Stanford Institute for Neuro-innovation and Translational Neurosciences, Results Stanford, CA 94305. KCNE1 Slows the PIP2-Dependent Channel Rundown. To investigate 2To whom correspondence should be addressed. E-mail: [email protected]. the regulation of IKs by PIP2, we expressed KCNQ1 with and This article contains supporting information online at www.pnas.org/lookup/suppl/ without KCNE1 in oocytes from Xenopus laevis and recorded doi:10.1073/pnas.1100872108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1100872108 PNAS Early Edition ∣ 1of6 Downloaded by guest on October 1, 2021 lost within 5 min (Fig. 1A). This rundown of current was fit well plete current rundown, which restored channel activity in a dose- with a single exponential (Fig. 1B). However, after excising dependent manner (Fig. 2A). The effective PIP2 concentrations inside-out membrane patches expressing KCNQ1 þ KCNE1, of half maximal activation (EC50) for KCNQ1 and KCNQ1þ currents remained stable over 3 min prior to rundown, which KCNE1 are >600 μM and 4.6 μM, respectively (Fig. 2 B and C). was not observed with KCNQ1 alone (Fig. 1B). The subsequent These results show that KCNE1 greatly enhances the PIP2 sen- rundown of KCNQ1 þ KCNE1 current was slower than that sitivity of the channel resulting in a longer time course of run- observed with KCNQ1 alone (Fig. 1 B and C). This rundown down as the channels can still function at lower PIP2 levels. To of IKs activity is attributed to the loss of PIP2 from the excised further confirm the correlation between time course of PIP2- membrane patch (6). The PIP2 dependence of current rundown dependent rundown and PIP2 sensitivity, we studied two LQT after patch excision was supported by the following experi- mutations of KCNQ1, R539W, and R555C, coexpressed with ments. The voltage sensitive phosphatase from Ciona intestinalis KCNE1, both of which decrease PIP2 sensitivity (Fig. 2 B and C) (CiVSP) that dephosphorylates PIP2 upon membrane depolari- (5). Consistently, these mutants shortened the time course of run- zation (10) was coexpressed with KCNQ1 þ KCNE1. CiVSP down by eliminating the delay and decreasing the time constant hastens PIP2 loss from the membrane patch, resulting in a faster of rundown relative to WT KCNQ1 þ KCNE1 (Figs. 1C and 2B). rate of current rundown. Conversely, directly applying 10 μMof It is important to note that application of high levels of PIP2 exogenous PIP2 to the intracellular face of membrane patches could increase the current of KCNQ1 beyond the level measured expressing KCNQ1 þ KCNE1 prevented current rundown for immediately following patch excision (Fig. 2 A and B). This result longer than 10 min (Fig. 1 B and C). These results show that suggests that the native PIP2 level in the patch membrane is not PIP2 loss after patch excision leads to loss of channel activity. sufficient to saturate the PIP2 binding and activation of all KCNQ1 activity is lost more quickly after patch excision than KCNQ1 channels; therefore, supernormal levels of exogenous KCNQ1 þ KCNE1, indicating that KCNE1 slows PIP2-depen- PIP2 can activate channels that are PIP2 unbound in the native dent rundown. To further demonstrate this effect of KCNE1, membrane patch. In contrast, high doses of PIP2 could not in- we injected oocytes with the same amount of KCNQ1 mRNA crease the current of KCNQ1 þ KCNE1 beyond the amplitude and various amounts of KCNE1 mRNAs in molar ratios of 1∶0, immediately following patch excision (Fig. 2 A and B), indicating 1∶0.01, 1∶0.05, and 1∶1. The activation kinetics and the steady- that KCNE1 association enhances PIP2 affinity, such that channel state voltage dependence of activation of the expressed channels activation by PIP2 is saturated immediately following patch exci- depend on the KCNQ1∶KCNE1 ratio, which suggested that pore- sion. This conclusion is supported by the delay before PIP2- forming KCNQ1 subunits are associated with varying numbers of dependent current rundown that is present only when KCNE1 KCNE1 subunits (11–13) (Fig. S1). The time course of current is coexpressed with KCNQ1 (Fig. 1 B–E). This delay likely repre- rundown became progressively longer with higher concentrations sents a period when the PIP2 level in the patch membrane is of KCNE1 due to a longer delay and a larger time constant of supersaturating for activating KCNQ1 þ KCNE1.
Recommended publications
  • Towards Mutation-Specific Precision Medicine in Atypical Clinical
    International Journal of Molecular Sciences Review Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes Tadashi Nakajima * , Shuntaro Tamura, Masahiko Kurabayashi and Yoshiaki Kaneko Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; [email protected] (S.T.); [email protected] (M.K.); [email protected] (Y.K.) * Correspondence: [email protected]; Tel.: +81-27-220-8145; Fax: +81-27-220-8158 Abstract: Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel- related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterol- ogous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the patho- physiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and Citation: Nakajima, T.; Tamura, S.; paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a Kurabayashi, M.; Kaneko, Y.
    [Show full text]
  • Examining the Regulation of Kv7 K+ Channels in Airway Smooth Muscle Cells and Their Potential As Novel Therapeutic Targets for the Treatment of Asthma
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2017 Examining the Regulation of Kv7 K+ Channels in Airway Smooth Muscle Cells and Their Potential as Novel Therapeutic Targets for the Treatment of Asthma Jennifer Haick Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Pharmacology Commons Recommended Citation Haick, Jennifer, "Examining the Regulation of Kv7 K+ Channels in Airway Smooth Muscle Cells and Their Potential as Novel Therapeutic Targets for the Treatment of Asthma" (2017). Dissertations. 2588. https://ecommons.luc.edu/luc_diss/2588 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2017 Jennifer Haick LOYOLA UNIVERSITY CHICAGO EXAMINING THE REGULATION OF Kv7 K+ CHANNELS IN AIRWAY SMOOTH MUSCLE CELLS AND THEIR POTENTIAL AS NOVEL THERAPEUTIC TARGETS FOR THE TREATMENT OF ASTHMA A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN MOLECULAR PHARMACOLOGY AND THERAPEUTICS BY JENNIFER HAICK CHICAGO, IL MAY 2017 ACKNOWLEDGEMENTS I would like to take a moment to thank all of the people who have helped and supported me these past years while I have been working towards my Ph.D. First and foremost, I would like to thank Dr. Kenneth Byron for accepting me into his lab and for his mentorship these past years.
    [Show full text]
  • Variants in the KCNE1 Or KCNE3 Gene and Risk of Ménière’S Disease: a Meta-Analysis
    Journal of Vestibular Research 25 (2015) 211–218 211 DOI 10.3233/VES-160569 IOS Press Variants in the KCNE1 or KCNE3 gene and risk of Ménière’s disease: A meta-analysis Yuan-Jun Li, Zhan-Guo Jin and Xian-Rong Xu∗ The Center of Clinical Aviation Medicine, General Hospital of Air Force, Beijing, China Received 1 August 2015 Accepted 8 December 2015 Abstract. BACKGROUND: Ménière’s disease (MD) is defined as an idiopathic disorder of the inner ear characterized by the triad of tinnitus, vertigo, and sensorineural hearing loss. Although many studies have evaluated the association between variants in the KCNE1 or KCNE3 gene and MD risk, debates still exist. OBJECTIVE: Our aim is to evaluate the association between KCNE gene variants, including KCNE1 rs1805127 and KCNE3 rs2270676, and the risk of MD by a systematic review. METHODS: We searched the literature in PubMed, SCOPUS and EMBASE through May 2015. We calculated pooled odds ra- tios (OR) and 95% confidence intervals (CIs) using a fixed-effects model or a random-effects model for the risk to MD associated with different KCNE gene variants. The heterogeneity assumption decided the effect model. RESULTS: A total of three relevant studies, with 302 MD cases and 515 controls, were included in this meta-analysis. The results indicated that neither the KCNE1 rs1805127 variant (for G vs. A: OR = 0.724, 95%CI 0.320, 1.638, P = 0.438), nor the KCNE3 rs2270676 variant (for T vs. C: OR = 0.714, 95%CI 0.327, 1.559, P = 0.398) was associated with MD risk.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Atrial Fibrillation (ATRIA) Study
    European Journal of Human Genetics (2014) 22, 297–306 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg REVIEW Atrial fibrillation: the role of common and rare genetic variants Morten S Olesen*,1,2,4, Morten W Nielsen1,2,4, Stig Haunsø1,2,3 and Jesper H Svendsen1,2,3 Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1–2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF.
    [Show full text]
  • Dynamic Subunit Stoichiometry Confers a Progressive Continuum of Pharmacological Sensitivity by KCNQ Potassium Channels
    Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels Haibo Yua,b, Zhihong Lina,b,1, Margrith E. Mattmannc,d,e, Beiyan Zoua,b, Cecile Terrenoiref, Hongkang Zhanga,b, Meng Wua,b,2, Owen B. McManusa,b, Robert S. Kassf, Craig W. Lindsleyc,d,e,g, Corey R. Hopkinsc,d,e,g,3, and Min Lia,b,3 aThe Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and bJohns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD 21205; cDepartment of Pharmacology and dVanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232; gDepartment of Chemistry and eVanderbilt Specialized Chemistry Center for Probe Development, Vanderbilt University, Nashville, TN 37232; and fDepartment of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032 Edited by Richard W. Aldrich, University of Texas at Austin, Austin, TX, and approved April 3, 2013 (received for review January 14, 2013) Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed represents an effective strategy to understand the physiological abundantly in heart but they are also found in multiple other tissues. roles of this current and may form a basis for development of Differential coassembly with single transmembrane KCNE beta sub- therapeutics for specific cardiac arrhythmias. units in different cell types gives rise to a variety of biophysical Several pharmacological gating modifiers of KCNQ1 have been properties, hence endowing distinct physiological roles for KCNQ1– reported. These include R-L3 (9, 10), zinc pyrithione (ZnPy) (11) KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result and phenylboronic acid (PBA) (12).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • KCNE1 and KCNE3 Modulate KCNQ1 Channels by Affecting
    KCNE1 and KCNE3 modulate KCNQ1 channels by PNAS PLUS affecting different gating transitions Rene Barro-Soriaa,1,2, Rosamary Ramentola, Sara I. Liina,3, Marta E. Pereza, Robert S. Kassb, and H. Peter Larssona,2 aDepartment of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136; and bDepartment of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Edited by Ramon Latorre, Universidad de Valparaíso, Valparaíso, Chile, and approved July 19, 2017 (received for review June 16, 2017) KCNE β-subunits assemble with and modulate the properties of on the activation of KCNQ1 channels is still debated. Here, we voltage-gated K+ channels. In the heart, KCNE1 associates with simultaneously track changes in voltage sensor movement and in the α-subunit KCNQ1 to generate the slowly activating, voltage- gate opening of KCNQ1/KCNE1 and KCNQ1/KCNE3 channels dependent potassium current (IKs) in the heart that controls the using voltage clamp fluorometry (VCF) to determine the differ- repolarization phase of cardiac action potentials. By contrast, in ences in the molecular mechanisms by which KCNE1 and KCNE3 epithelial cells from the colon, stomach, and kidney, KCNE3 coas- alter KCNQ1 channel gating. + sembles with KCNQ1 to form K channels that are voltage- Pore-forming KCNQ1 channel α-subunits form tetramers. Each + independent K channels in the physiological voltage range and α-subunit has six transmembrane (TM) segments (S1–S6) divided important for controlling water and salt secretion and absorption. into two functional domains: a voltage sensor domain comprising How KCNE1 and KCNE3 subunits modify KCNQ1 channel gating so four peripheral TM helices (S1–S4) and a centrally located pore differently is largely unknown.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Characterization of Cardiac Iks Channel Gating Using Voltage Clamp Fluorometry Jeremiah D. Osteen Submitted in Partial Fulfillme
    Characterization of cardiac IKs channel gating using voltage clamp fluorometry Jeremiah D. Osteen Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Jeremiah D. Osteen All rights reserved ABSTRACT Characterization of cardiac IKs channel gating using voltage clamp fluorometry Jeremiah D. Osteen Voltage-gated ion channels make up a superfamily of membrane proteins involved in selectively or non-selectively conducting charged ions, which can carry current in and out of cells, in response to changes in membrane voltage. Currents carried by ion channels influence the voltage across the cell membrane, which can trigger changes in the conductance of neighboring voltage-gated channels. In this way, signals, measured as transient changes in voltage called action potentials, can be sent through and between cells in order to transmit information quickly and efficiently throughout excitable systems. My thesis work focuses on elucidating the mechanisms underlying the voltage-dependent gating of a member of the voltage gated potassium (Kv) channel family, KCNQ1 (Kv7.1). Like other members of the voltage gated potassium family, the KCNQ1 channel is made up of four subunits, each containing a voltage sensing domain and a pore-forming domain. Tetrameric channels form with a single central pore domain, and four structurally independent voltage sensing domains. KCNQ1 plays roles both in maintenance of the membrane potential (it forms a leak current in epithelial cells throughout the body) as well as a very important role in resting membrane potential reestablishment (it forms a slowly activating current important in action potential repolarization in cardiac cells).
    [Show full text]
  • Ion Channels As Part of Macromolecular Multiprotein Complexes Clinical Significance
    Schwerpunkt Herzschr Elektrophys 2018 · 29:30–35 Jordi Heijman1 · Dobromir Dobrev2 https://doi.org/10.1007/s00399-017-0542-y 1 Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Received: 9 August 2017 Life Sciences, Maastricht University, Maastricht, The Netherlands Accepted: 11 October 2017 2 Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Published online: 6 December 2017 Duisburg-Essen, Essen, Germany © The Author(s) 2017. This article is an open access publication. Ion channels as part of macromolecular multiprotein complexes Clinical significance Introduction Cardiac cellular electrophysiol- Na+ and K+ concentrations is achieved ogy and arrhythmogenesis via the Na+-K+-ATPase. Every heartbeat is orchestrated by a cas- Each of these ion channels is in fact cade of electrical activity that initiates Although there are important quantita- a large macromolecular complex consist- contraction in cardiomyocytes through tive differences in cellular electrophys- ingofnumerousproteinsthatregulate a process termed excitation–contraction iology and Ca2+ handling between dif- the intracellular movement and distri- coupling [1, 2]. The electrophysiological ferent cardiac regions (reviewed in [1, bution (a processes termed trafficking) properties of cardiomyocytes are dy- 2, 4]), a number of commonalities and and function of these channels. Dys- namically regulated to adapt to varying general mechanisms can be highlighted. function of any of these ion channels demands. Research performed during The upstroke of the action potential (AP) in the setting of cardiovascular disease the past 20 years has shown that the ion in cardiomyocytes is mediated by Na+ may predispose to atrial or ventricular channelsand Ca2+-handlingproteinsthat influx through voltage-dependent Na+ arrhythmias by promoting triggered ac- are essential for cardiomyocyte electro- channels.
    [Show full text]
  • Physiological and Pathophysiological Regulation of the Ryanodine Receptor in Skeletal Muscle
    Physiological and pathophysiological regulation of the ryanodine receptor in skeletal muscle Alisa Umanskaya Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Alisa Umanskaya All rights reserved Abstract Physiological and pathophysiological regulation of ryanodine receptor in skeletal muscle Alisa Umanskaya Ryanodine receptor calcium release channels are essential for skeletal muscle contraction, as they mediate the release of calcium ions from intracellular stores into the cytosol. The data presented in this dissertation demonstrate the evolutionarily conserved mechanisms of skeletal muscle ryanodine receptor regulation in the physiological and pathophysiological states. Adrenergic stimulation causes increased skeletal muscle force, however, despite the well- established role of this physiological response, the molecular mechanism is not known. Here we present a mechanism whereby phosphorylation of a single amino acid on the ryanodine receptor is a key signal in the physiological stress-induced inotropic response in mouse skeletal muscle. Therefore acute post-translational modifications of ryanodine receptor channels are important for healthy muscle contraction. Conversely, chronic stress-induced post-translational modifications result in poorly functioning murine ryanodine receptor channels that contribute to skeletal muscle dysfunction in age- dependent skeletal muscle weakness and Muscular Dystrophies. Finally, we present data that demonstrates striking evolutionary conservation in ryanodine receptor regulation in the physiological and pathophysiological states between mice and C. elegans. This work has broad implications for understanding the underlying mechanisms of skeletal muscle contraction and important disorders that affect human health. Furthermore, this works presents ryanodine receptor channels as a viable therapeutic target for age-related skeletal muscle weakness, Muscular Dystrophies, and also implicates C.
    [Show full text]