Revista Española de Micropaleontología, 43 (3), 2011, pp. 173-207 ©Instituto Geológico y Minero de España ISSN: 0556-655X Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic , Cretaceous (late Albian-Santonian)

Marius Dan Georgescu

Department of Geosciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada. [email protected]

RESUMEN

La aparión de conchas de praeglobotruncánidos tuvo un desarrollo iterativo en tres géneros/linajes direccionales durante el intervalo Albiense tardío-Santoniense. Se describe un nuevo género/linaje direccional, Bermudeziana, y una nueva especie, Fingeria praeglo- botruncaniformis. Como herramienta para describir los cambios morfológicos dentro de una misma estirpe y comparar el desarrollo en distintos linajes en los cuales ciertas características se alcanzaron de forma independiente, se desarrolla un nuevo sistema de tipos de especies obteniéndose una clasificación evolutiva.

Palabras clave: Foraminíferos planctónicos, Cretácico, clasificación evolutiva, nuevos linajes direccionales, nueva especie.

ABSTRACT

The praeglobotruncanid test appearance was iteratively developed in three genera/directional lineages during the late Albian-Santon- ian. A new genus/directional lineage, Bermudeziana, and a new species, Fingeria praeglobotruncaniformis are described. A new sys- tem of species types is developed for the evolutionary classification, as a tool to describe the morphological changes within a lineage and compare the developments in lineages in which certain features were achieved independently.

Keywords: Planktic foraminifera, Cretaceous, evolutionary classification, new directional lineage, new species.

1. INTRODUCTION tulates taxa grouping at various levels based only on mor- phological resemblances; such a practice tends, for exam- Iterative evolution is a widespread pattern among the Cre- ple, to bring together into the same genus distantly related taceous planktic foraminifera, which results in the repeti- species that independently developed one or a few mor- tive development of certain morphological features in phological features considered of taxonomic significance distant lineages. Its existence is a major challenge to a tax- by a knowledgeable and experienced specialist. Therefore, onomist who seeks to define natural, monophyletic units a new approach is necessary to develop a classification above the species level. This challenge is de facto gener- framework able to accommodate the results of the iterative ated by the use of the Linnaean classification, which pos- evolution.

173 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

A crucial aspect in refining the classification framework prominent on the earlier chambers and a main aperture is the resolution at which the test morphological features considered by various authors in either umbilical-extraum- are observed. The classical taxonomic frameworks for the bilical or extraumbilical-umbilical position (Bermúdez, Cretaceous planktic foraminifers were developed entirely 1952; Banner & Blow, 1959; Loeblich & Tappan, 1964, at the resolution of the optical stereomicroscope (Cush- 1987; Robaszynski & Caron, 1979; Caron, 1985; Korcha- man, 1927, 1948; Sigal, 1952a; Brönnimann, 1952; Gan- gin, 2003). The genus concept remained relatively stable dolfi, 1955; Reiss, 1957; Banner & Blow, 1959; over nearly 60 years and different author opinions focused Brönnimann & Brown, 1956; Bolli et al., 1957; Loeblich rather on the species to be included within it. A wider in- & Tappan, 1964, Pessagno, 1967). The introduction of the terpretation of Praeglobotruncana was given by Banner & scanning electron microscope in the current practice of Blow, 1959, who regarded it as consisting of three subgen- this foraminiferal group resulted in a significant increase era: P. (Praeglobotruncana), P. () Brönnimann of observation resolution; such technological break- & Brown, 1958 and P. (Clavihedbergella) Banner & Blow, through provided us with the first high-detailed observa- 1959. The origin of Praeglobotruncana was considered tions of the test wall ultrastructure, ornamentation, among the globular-chambered tests of pre-Albian age porosity as well as a reevaluation of the delicate test fea- (i.e., Globigerina s.l.) by Reiss (1957, p. 142). Banner & ture, such as peripheral and periapertural structures, etc Blow (1959, p. 10) detailed the evolutionary origin and (Eicher & Worstell, 1970; Eicher, 1973, Michael, 1973; role of P. (Praeglobotruncana) by considering it transitional Longoria, 1973, 1974, etc). Despite this advance, the sub- between P. (Hedbergella) and Rotalipora. Praeglobotrun- sequent taxonomic reviews by Masters (1977), Robaszyn- cana’s origin from species of Hedbergella is generally ac- ski & Caron (1979), Robaszynski et al. (1984) and cepted today (Caron, 1983; Robaszynski et al., 1990; Hart, Loeblich & Tappan (1987) remained mostly based on the 1999; Hart et al., 2002). gross test architectural features. Testing the occurrence of iterative evolution in the case of High-resolution, SEM-observable test features (i.e., ultra- Praeglobotruncana is challenging mainly due to the stable structure and porosity) were used for the first time in the nature of the genus over several decades. The SEM was Cretaceous planktic foraminiferal taxonomy on a large extensively used to make high resolution observations on scale by Banner and Desai (1988). This study opened a the test ultrastructure, ornamentation, porosity and other new way towards understanding the iterative evolution delicate and therefore, rarely preserved morphological among several genera of the upper Cretaceous structures. Such observations were made in stratigraphic foraminifera, such as Pseudoguembelina Brönnimann & context, in order to observe the discrete morphological Brown, 1953 (Georgescu, 2007), Laeviheterohelix Neder- changes through time. Ultimately, the identification of lin- bragt, 1991 (Georgescu, 2009a), Clavihedbergella Banner eages as natural units with significance in evolutionary & Blow, 1959 (Georgescu, 2009b) and Ventilabrella Cush- classification that independently led to the development man, 1928 (Georgescu, 2010a). These developments also of praeglobotruncanid tests demonstrates the occurrence led to the definition of two kinds of lineages as taxonomic of iterative evolution within this group. units with significance in evolutionary classification: di- rectional and branched (Georgescu, 2010a). These devel- opments demonstrated also the necessity of high resolution taxonomic studies in order to identify the oc- 2. ITERATIVE EVOLUTION AND currences of iterative evolution and therefore refine the CHALLENGES TO CLASSIFICATION Cretaceous planktic foraminiferal classification. APPROACH

Praeglobotruncana Bermúdez, 1952 is a frequent genus in The in-use Cretaceous planktic foraminiferal classification the upper Albian-middle Turonian sediments and accord- is mostly Linnaean. In this approach the iterative evolu- ing to the present-day acceptance represents a distinct tion pattern was rarely recognized and taken into consid- plexus characterized by a trochospiral test, peripheral eration in the taxa definitions (Robaszynski & Caron, structures consisting of closely-spaced pustules more 1979; Robaszynski et al., 1984; Loeblich & Tappan, 1987;

174 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Nederbragt, 1991, etc). Linnaean classification practice at A distinct evolution pattern in the Cretaceous planktic the genus and species level is based on the premise that foraminifera is the high rate of morphological changes species showing a certain degree of resemblance can be pertaining to gross test architecture in certain lineages, re- grouped into genera (Fig. 1-A). Occurrence of a taxonom- sulting in frequent crossings over the boundaries between ically significant morphological feature or set of features Linnaean genera or higher taxonomic categories (Randri- can provide the reason for grouping the species, irrespec- ansolo & Anglada, 1989; Georgescu & Huber, 2008; tive of their ancestry. Practically, this approach in species Georgescu, 2009b, 2010b). This pattern, together with the grouping takes into consideration only the effects of iter- iterative evolution, induces a major challenge to the Lin- ative evolution. One of the cases of taxonomic solution naean classification, because different test morphologies, that accommodates the iterative evolution is represented which potentially require formalization at the genus level, by the separation between two Late Cretaceous homeo- can be successively developed in the same lineage. Ac- morphous genera, Helvetoglobotruncana Reiss, 1957 and cordingly, maintaining unchanged the classical taxonom- Gansserina Caron, González Donoso, Robaszynski & ically significant features, invariably results in a significant Wonders, 1984 of the early Turonian and late Campan- proliferation of monospecific genera and/or genus-line- ian-Maastrichtian respectively (Robaszynski et al., 1984). ages (Fig. 1-B). The latter kind of unit, although a step for-

Figure 1. Schematic presentation of the classification approaches and how they can accommodate the iterative evolution pattern. A: a certain “mor- phology” developed in independent lineages is used to define a genus. B: although two lineages are recognized, they are subdivided into monospe- cific genera or genus-lineages (*) function of the “morphologies” succession. C: successions of “morphologies” are grouped into lineages, which are natural units. T1 to T6 represent timelines.

175 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011 ward towards implementing evolution in taxonomy, has with applicability in evolutionary classification is herein the major disadvantage of being a hybrid unit between developed for the first time. those of Linnaean and evolutionary classifications. The species of a directional lineage (DL) are primarily sub- The evolutionary approach in classification is fundamen- divided into initiating (IS) and descendants (DS) (Fig. 2). tally different of the Linnaean one, for species grouping The earliest species of a DL is referred to as basal species into higher units is based on a mixture of morphological and it marks the lineage initiation. The descendant species resemblances given by the common ancestry and differ- can be subsequently subdivided as a function of the tim- ences resulting from the evolution process (Georgescu, ing of their first evolutionary occurrence into first descen- 2009b, 2010a, 2010b, 2010c). According to this method, dant species (FDS), second descendant species (SDS), species are grouped into lineages (Georgescu, 2009b), third descendant species (TDS), etc. Similarly, a branched which are supraspecific taxonomic categories. There are lineage (BL) consists of the initiating (IS) and descendant two kinds of lineages, directional and branched, and the species, with the subsequent subdivision of the latter func- separation between them is a function of the evolution tion of their first evolutionary occurrence into first descen- pattern (Georgescu, 2010a). Therefore, evolutionary clas- dant species (FDS), second descendant species (SDS), etc sification is rather empirical (i.e., there are two kinds of (Fig. 2). lineages and new such categories can be defined as our The new system of species type is primarily developed as knowledge increases) rather than axiomatic as the Lin- tool to describe the morphological changes in a lineage naean classification, in which the species can be grouped and it helps to understand and compare the evolutionary only into genera. In the evolutionary classification frame- developments in lineages that independently achieved work, each lineage often includes a succession of mor- similar morphologies. Species types are controlled by the phologies and the number of lineages as units with lineage architecture. Therefore, the species type system is taxonomic significance corresponds to the number of opened: new types of species can be defined as new types originations (Fig. 1-C). of lineages are discovered.

All three classification approaches can be used by taxon- omists studying the Cretaceous planktic foraminiferal fos- sil record. The three differ by the acceptance/non-accept- ance of iterative evolution pattern and trans-lineage nature of most units in the Linnaean classification. Ultimately, the taxonomic frameworks resulting from the application of the three classification approaches can present significant differences but all should be regarded as factual and ob- jective if based on facts and consistently developed. The Linnaean and evolutionary classifications are presented in parallel in this study in order to compare the advantages resulting from the use of each method.

3. SPECIES TYPES IN EVOLUTIONARY CLASSIFICATION

The definition of the two types of lineages, directional and branched (Georgescu, 2010a, p. 72-73), creates the pos- Figure 2. Species type in evolutionary classification. Abbreviations: IS- sibility to differentiate between the species types function initiating species, FDS-first descendant species, SDS-second descendant of their position in a lineage. A system of species types species, TDS-third descendant species. T1 to T4 represent timelines.

176 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

4. MATERIAL AND METHODS 5. SYSTEMATIC TAXONOMY

This study synthesises high resolution, SEM-based obser- Taxonomic units at species and genus/lineage level are vations on test morphology in stratigraphical context col- given for Linnaean and evolutionary classifications, with lected from the following Deep Sea Drilling Project the evolutionary classification units after Georgescu (DSDP)/Ocean Drilling Program (ODP) sites: DSDP Site 95 (2010a). The concept of composite paleontological (Yucatan outer shelf, Caribbean region – upper Turonian- species (Georgescu & Huber, 2009) is followed through- Santonian), DSDP Site 463 (Mid-Pacific Mountains, equa- out. torial Central Pacific Ocean – upper Albian-Turonian), ODP Hole 1050C (Blake Plateau, western North Atlantic Ocean – upper Albian-lower Turonian) and ODP Hole 1052E (Blake Order FORAMINIFERIDA Eichwald, 1830 Plateau, western North Atlantic Ocean – upper Albian-low- Suborder Delage & Hérouard, 1896 er Cenomanian). Upper Albian-lower Turonian fossil assem- Superfamily ROTALIPORACEA Sigal, 1958 blages including praeglobotruncanid tests from approximate- Family Loeblich & Tappan, 1961 ly forty wells drilled in the Romanian Western Black Sea Subfamily ROTUNDININAE Bellier & Salaj, 1977 offshore and deposited in the PETROMAR Collection (Con- stanta, Romania) were studied during 1990-1998 with the Genus/DL: Praeglobotruncana Bermúdez, 1952 – aid of the optical stereomicroscope and in thin sections. emended Additional material from the upper Cenomanian of San Juan Island (Washington State, USA) was analyzed in the Type species: Praeglobotruncana delrioensis (Plummer, McGugan Collection (University of Calgary, Canada). 1931).

Holotypes, paratypes and topotypes of various species in 1952 Praeglobotruncana Bermúdez, p. 52. repository in the Cushman Collection (National Museum 1953 Rotundina SUBBOTINA, p. 130. of Natural History -NMNH- Washington, D.C., USA), Loe- 1956 Praeglobotruncana Bermúdez. – Brönnimann & blich and Tappan Topotype Collection (NMNH) and Mu- Brown, p. 530. seum of paleontology, University of California, Berkeley 1957 Praeglobotruncana Bermúdez. – Bolli et al., p. 39. were studied on site or through temporary loan. They are 1957 Praeglobotruncana Bermúdez. – Reiss, 135. mentioned in the “Material” section under the correspon- 1959 Praeglobotruncana (Praeglobotruncana) Ber- ding species. The type specimens of the newly described múdez. – Banner & Blow, p. 17. species are deposited in the Willi Karl Braun Micropale- 1961 Praeglobotruncana Bermúdez. – Loeblich & Tap- ontological Collection (University of Calgary, Canada); pan, p. 280. they are labelled with the acronym WKB followed by the 1964 Praeglobotruncana Bermúdez. – Loeblich & Tap- inventory number. pan, p. C659. 1965 Praeglobotruncana Bermúdez. – Saavedra, p. 324. The fossil assemblages were studied initially under the op- tical stereomicroscope, resulting in the preliminary test 1970 Praeglobotruncana Bermúdez. – Porthault in morphology assessment for all involved species; occur- Donze et al., p. 69. rences of well-preserved tests were also recognized in this 1975 Praeglobotruncana Bermúdez. – Longoria & Gam- phase. High resolution morphological observations were per, p. 73. made with the aid of the SEM, both in whole test and de- 1977 Praeglobotruncana Bermúdez. – Masters, p. 485. tail micrographs, with emphasis put on the high detail test 1979 Praeglobotruncana Bermúdez. – Robaszynski & features, such as ultrastructure, ornamentation and poros- Caron, p. 15, 22. ity characteristics. All species were studied under the SEM 1985 Praeglobotruncana Bermúdez. – Caron, p. 24. on specimens from throughout their stratigraphical ranges, 1983 Praeglobotruncana Bermúdez. – Loeblich & Tap- in order to evaluate the morphological feature persistence pan, p. 463. and/or changes through time. 2003 Praeglobotruncana Bermúdez. – Korchagin, p. 31.

177 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Species included.– P. delrioensis (Plummer, 1931) – IS and eral structures and (ii) umbilical system consisting of im- P. stephani (Gandolfi, 1942) – FDS. perforate flaps and only occasionally developed portici rather than with well-developed portici and occasional te- Emended description.– Test is low to medium high, con- gillum or tegilla. sisting of chambers with gradual size increase. Earlier chambers are globular, those of the adult stage subglobu- Stratigraphic range.– Upper Albian-upper Cenomanian lar to axially compressed. Chambers of the last whorl are (from the P. ticinensis Biozone to the R. cushmani Bio- petaloid on the spiral side and subtriangular to subtrape- zone). zoidal on the umbilical side; sutures are depressed except- ing those between the last formed chambers on the spiral Geographic distribution.– Cosmopolitan. side in the FDS, which are lined towards the anterior mar- gin with ridges formed by fused pustules. Tests are asym- metrical in edge view, with convex spiral side and slightly Species/IS: Praeglobotruncana delrioensis concave umbilical side. Periphery is subangular in the IS (Plummer, 1931) and subangular to pinched in the FDS, with gradually de- (Plate 1, Figs 4-9) veloped peripheral structures; IS with irregular agglomer- 1931 Globorotalia delrioensis Plummer, p. 199, pl. ations of pustules on the earlier chambers of the final 13, fig. 2. whorl, FDS with an imperforate peripheral band with 1940 non Globorotalia delrioensis Plummer. – Tappan, p. fused pustules, which are more prominent on the earlier 123, pl. 19, fig. 14. chambers. Main aperture is variable in position in the 1946 non Globorotalia delrioensis Plummer. – Loeblich early species, umbilical-extraumbilical to extraumbilical- & Tappan, text-fig. 4B. umbilical in the IS, and extraumbilical-umbilical in the 1952 non Praeglobotruncana delrioensis (Plummer). – FDS. A narrow imperforate lip, occasionally an imperfo- Bermúdez, p. 52, pl. 7, fig. 1. rate flap, borders the aperture. Umbilicus is small, with a 1957 Praeglobotruncana delrioensis (Plummer). – diameter of approximately one fifth to one fourth of the Bolli et al., pl. 9, fig. 1. maximum test diameter; no relict periapertural structures 1959 Praeglobotruncana delrioensis (Plummer). – occur in the umbilical area. Chambers are ornamented Klaus, p. 793, pl. 6, fig. 1. with scattered, dome-like pustules, which are denser on 1961 Praeglobotruncana delrioensis (Plummer). – the earlier chambers. Test wall is calcitic, hyaline, simple and perforate; the average pore diameter slightly increases Loeblich & Tappan, p. 280, pl. 6, figs 9-12. from the IS to the FDS. 1963 Praeglobotruncana delrioensis (Plummer). – Küpper, p. 615, pl. 2, fig. 4. Remarks.– Praeglobotruncana is redefined in the evolu- 1967 Praeglobotruncana delrioensis (Plummer). – tionary classification as a directional lineage. It is the ear- Prosnyakova, p. 5, pl. 1, fig. 3. liest lineage in the Cretaceous planktic foraminiferal 1967 Praeglobotruncana delrioensis (Plummer). – history that developed praeglobotruncanid general test Pessagno, p. 286, pl. 52, figs 3-5. morphology. The Praeglobotruncana directional lineage 1968 Praeglobotruncana delrioensis (Plummer). – initiation is apparent in the development of axially com- Scheibnerová, p. 60, pl. 8, fig. 3. pressed chambers, peripheral structures consisting of ag- 1969 Praeglobotruncana delrioensis (Plummer). – glomerations of pustules and then incipient keel on the Neagu, p. 141, pl. 16, figs 4-6, pl. 18, figs 1-3, earlier chambers of the final whorl and a significant size 7-8, pl. 21, figs 3-8, pl. 22, figs 1-3. increase of the dome-like pustules, which ornament the 1972 Praeglobotruncana delrioensis (Plummer). – chamber surface. Praeglobotruncana differs from Hed- Barr, p. 15, pl. 2, fig. 7. bergella Brönnimann and Brown, 1958 by having (i) axi- 1975 Praeglobotruncana delrioensis (Plummer). – ally compressed chambers in the last whorl and (ii) distinct Longoria & Gamper, pl. 2, fig. 2, pl. 3, fig. 2. peripheral structures. It differs from Globotruncanella 1977 Praeglobotruncana delrioensis (Plummer). – Reiss, 1957 mainly by (i) having more prominent periph- Masters, p. 486, pl. 27, figs 4-5, pl. 28, fig.1.

178 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

1977 Praeglobotruncana delrioensis (Plummer). – Description.– Test is low to medium-high trochospiral, Pflaumann & Krasheninnikov, p. 548, pl. 4, figs consisting of 14 to 16 chambers arranged in 2 to 3 whorls 1, 3. (Pl. 1, Figs 6-7); 5 ½ to 6 ½ (commonly 6 to 6 ½) cham- 1977 Praeglobotruncana delrioensis (Plummer). – bers in the final whorl (Pl. 1, Figs 4, 6-7, 9). Earlier cham- Sliter, p. 542, pl. 8, figs 1-3, 6. bers are globular, often hardly visible due to the 1978 Praeglobotruncana delrioensis (Plummer). – successive layers of calcite added; chambers of the final Caron, p. 660, pl. 7, figs 3-4. whorl axially compressed, with slow increase in size and 1979 Praeglobotruncana delrioensis (Plummer). – variable overlapping (Pl. 1, Figs 6-7). Chamber shape is Robaszynski & Caron, p. 29, 32, pl. 43, figs 1- petaloid on the spiral side (Pl. 1, Figs 6-7) and subtriangu- 2. lar to subtrapezoidal on the umbilical side (Pl. 1, Figs 4, 1980 non Praeglobotruncana delrioensis (Plummer). – 9). Sutures are distinct and depressed on the spiral and Peryt, p. 57, pl. 13, figs 4-5. umbilical sides, perpendicular of oblique to the previous 1980 Praeglobotruncana delrioensis (Plummer). – whorl on the spiral side (Pl. 1, Figs 6-7) and radial on the Salaj, pl. 7, figs 3, 8-10. umbilical side (Pl. 1, Figs 4, 9); sutures between the ear- 1980 Praeglobotruncana delrioensis (Plummer). – lier chambers are commonly obscured by the successive Miles & Orr, p. 800, pl. 4, figs 11-12. layers of calcite added during the ontogenetic develop- 1984 Praeglobotruncana delrioensis (Plummer). – ment. Tests are asymmetrical in edge view, with convex Weidich, p. 90, pl. 10, figs 1-3. spiral side and slightly concave umbilical side (Pl. 1, Figs 1984 Praeglobotruncana delrioensis (Plummer). – 5, 8); periphery subangular without a true keel but with Leckie, p. 600, pl. 12, figs 1-8. agglomerations of pustules on the earlier chambers of the last whorl (Pl. 1, Figs 5, 8). Aperture is a low opening, um- 1985 Praeglobotruncana delrioensis (Plummer). – bilical-extraumbilical to extraumbilical-umbilical in posi- Caron, p. 65, fig. 30: 1-2. tion (Pl. 1, Figs 4, 9) and bordered by an imperforate lip 1997 Praeglobotruncana delrioensis (Plummer). – (Pl. 1, Fig. 9) or occasionally a triangular flap (Pl. 1, Fig. 4), Lipson-Benitah et al., fig. 13: 6-7. which is rarely preserved. Umbilicus is small and shallow, 2000 Praeglobotruncana delrioensis (Plummer). – its diameter representing approximately one fifth to one Georgescu, p. 164, pl. 2, figs 1-2. fourth of the maximum test diameter (Pl. 1, Figs 4, 9). 2006 Praeglobotruncana delrioensis (Plummer). – Chamber surface is ornamented with dome-like pustules, Petrizzo & Huber, pl. 4, fig. 2. which are concentrated on the earlier chambers of the test 2009 Praeglobotruncana delrioensis (Plummer). – (Pl. 1, Figs 4-9). Test wall is calcitic, hyaline, simple and Samuel et al., fig. 6: u. perforate; pores are circular, 1.0-2.3 µm in diameter. Material and its provenance.– Circa 1,100 specimens. Remarks.– Praeglobotruncana delrioensis evolved from Topotypes from the lower Cenomanian del Rio Formation Hedbergella delrioensis (Carsey, 1926) (Pl. 1, Figs 1-3) as (Travis County, Texas) deposited in the Loeblich and Tap- indicated by the general aspect of the test and ornamen- pan Topotype Collection, NMNH, Washington, D.C.; hy- tation consisting of coarse pustules concentrated on the potypes from the upper Albian-lower Turonian of ODP earlier chambers; P. delrioensis differs from H. delrioensis Hole 1050C - Huber Collection, NMNH; hypotypes from by the (i) axially compressed rather than globular or sub- the upper Albian-lower Cenomanian sediments of the globular chambers in the final whorl, (ii) irregular agglom- ODP Hole 1052E - Huber Collection, NMNH; hypotypes eration of pustules at the periphery of the earliest from the upper Albian-lower Turonian sediments of the chambers of the final whorl, (iii) ornamentation consist- DSDP Site 463; hypotypes from the uppermost Cenoman- ing of larger pustules (8.4-22.6 µm rather than 1.7-12.0 ian (San Juan Island, Washington State, USA) from the µm) and (iv) larger pores (1.0-2.3 µm rather than 1.2-1.8 McGugan Collection, University of Calgary, Canada); hy- µm). potypes from the upper Albian-middle Cenomanian sed- iments of the Romanian western Black Sea offshore - Stratigraphic range.– Upper Albian-Cenomanian (from the PETROMAR Collections. P. ticinensis Biozone to the R. cushmani Biozone).

179 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Geographic distribution.– Cosmopolitan. 1965 Praeglobotruncana stephani stephani (Gan- dolfi). – Caron, fig. 2. 1965 Praeglobotruncana stephani (Gandolfi). – Taka- Species/FDS: Praeglobotruncana stephani yanagi, p. 207, pl. 22, fig. 3. (Gandolfi, 1942) 1965 Praeglobotruncana stephani (Gandolfi). – (Plate 1, Figs 10-18) Eicher, p. 905, pl. 106, fig. 7. 1966 Praeglobotruncana stephani (Gandolfi). – Mar- 1942 Globotruncana stephani Gandolfi, p. 130, pl. ianos & Zingula, p. 337, pl. 37, fig. 10. 3, figs 4-5, pl. 4, figs 36-37, 41-45, pl. 6, figs 4, 1966 Praeglobotruncana delrioensis (Plummer). – 6, pl. 9, figs 5, 8, pl. 13, fig. 5, pl. 14, fig. 2. Caron, p. 72, pl. 2, fig. 1. 1946 Globorotalia marginaculeata Loeblich & Tap- 1966 Praeglobotruncana stephani (Gandolfi). – Dou- pan, p. 257, pl. 37, figs 19-21, text-fig. 4A. glas & Sliter, p. 107, pl. 4, fig. 1. 1948 Globorotalia californica Cushman & Todd, p. 1966 Praeglobotruncana stephani (Gandolfi). – Butt, 96, pl. 16, figs 22-23. p. 176, pl. 3, fig. 5. 1950 Globotruncana stephani Gandolfi. – Mornod, 1966 Praeglobotruncana stephani stephani (Gan- p. 587, pl. 15, figs 9-17, text-fig. 10. dolfi). – Caron, p. 73, pl. 2, fig. 3. 1950 Globotruncana stephani Gandolfi. – Reichel, 1966 Praeglobotruncana marginaculeata (Loeblich p. 608, pl. 16, fig. 6, pl. 17, fig. 6. and Tappan). – Caron, p. 73, pl. 2, fig. 2. 1952 Globotruncana stephani Gandolfi. – Carbon- 1966 Praeglobotruncana stephani (Gandolfi). – nier, p. 116, pl. 6, fig. 2. 1953 Rotundina stephani (Gandolfi). – Subbotina, p. Eicher, p. 28, pl. 6, fig. 4. 165, pl. 2, figs 5-7, pl. 3, figs 1-2. 1967 Praeglobotruncana stephani (Gandolfi). – Pros- 1954 Globotruncana stephani Gandolfi. – Hagn & nyakova, p. 3, pl. 1, fig. 1. Zeil, p. 33, pl. 2, fig. 7, pl. 5, figs 7-8. 1967 Praeglobotruncana stephani (Gandolfi). – Pes- 1955 Globotruncana (Rotundina) stephani (Gan- sagno, p. 287, pl. 50, figs 9-11. dolfi). – Küpper, p. 116, pl. 18, fig. 6. 1969 Praeglobotruncana stephani (Gandolfi). – Dou- 1956 Globotruncana (Praeglobotruncana) renzi glas, p. 173, pl. 2, fig. 1. (Thalmann & Gandolfi) subsp. primitiva Küp- 1969 Praeglobotruncana stephani stephani (Gan- per p. 43, pl. 8, fig. 2. dolfi). – Neagu, p. 141, pl. 16, figs 1-3, 7-12, 1956 Praeglobotruncana delrioensis (Plummer). – pl. 18, figs 4-6, 9-10, pl. 21, figs 9-10, pl. 23, Brönnimann & Brown, p. 531, pl. 21, figs 8-10. fig. 3. 1957 Praeglobotruncana stephani (Gandolfi). – Bolli 1969 Praeglobotruncana marginaculeata (Loeblich et al., p. 39, pl. 9, fig. 2. and Tappan). – Neagu, p. 142, pl. 16, figs 13- 1957 Globotruncana (Globotruncana ?) stephani 15, pl. 17, figs 1-7. stephani Gandolfi. – Gandolfi, p. 62, pl. 9, fig. 1969 Praeglobotruncana barbui Neagu, p. 143, pl. 3. 18, figs 11-15, pl. 19, figs 1-12, pl. 20, figs 1-3. 1959 Praeglobotruncana stephani stephani (Gan- 1969 Praeglobotruncana stephani (Gandolfi). – dolfi). – Klaus, p. 794, pl. 6, fig. 2. Caron & Luterbacher, p. 26, pl. 8, fig. 7. 1959 Globotruncana küpperi Thalmann, p. 130. 1969 Praeglobotruncana stephani (Gandolfi). – 1960 Praeglobotruncana stephani (Gandolfi). – Moorkens, p. 446, pl. 1, fig. 5. Takayanagi, p. 132, pl. 9, fig. 13. 1970 Praeglobotruncana stephani (Gandolfi). – 1961 Praeglobotruncana stephani (Gandolfi). – Loe- Eicher & Worstell, p. 308, pl. 10, fig. 9, pl. 11, blich & Tappan, 1961, p. 284, pl. 6, fig. 1 figs 2-3. (only). 1971 Praeglobotruncana stephani (Gandolfi). – Pos- 1963 Globotruncana (Globotruncana) stephani tuma, p. 72-73, unnumbered figs. stephani Gandolfi. – Küpper, p. 631, pl. 2, fig. 1972 Praeglobotruncana stephani (Gandolfi). – 5. Gawor-Biedowa, p. 76, pl. 8, fig. 1.

180 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

1972 non Praeglobotruncana stephani (Gandolfi). – Barr, 2001 Praeglobotruncana stephani (Gandolfi). – Tur et p. 15, pl. 2, fig. 6. al., fig. 10: 2-4. 1973 non Rotundina stephani (Gandolfi). – Bellier & 2004 non Praeglobotruncana stephani (Gandolfi). – Keller Salaj, p. 7, pl. 1, figs. 1-5. & Pardo, pl. 2, figs 9-11. 1973 Praeglobotruncana delrioensis (Plummer). – 2004 Praeglobotruncana cf. stephani (Gandolfi). – Michael, p. 216, pl. 5, figs 10-12. Gebhardt, fig. 7: P-R. 1977 Praeglobotruncana stephani (Gandolfi). – Lam- 2005 Praeglobotruncana delrioensis (Plummer). – olda, p. 385, pl. 1, fig. 1. Neagu, pl. 8, figs 1-12. 1977 Praeglobotruncana stephani (Gandolfi). – Mas- 2009 Praeglobotruncana stephani (Gandolfi). – ters, p. 491, pl. 28, figs 2-4. Samuel et al., fig. 6: v-w. 1977 Praeglobotruncana sp. – Masters, p.494, pl. 29, figs 1-3. Material and its provenance.– Circa 1,000 specimens. Topotypes from the Cenomanian sediments of Breggia 1979 Praeglobotruncana stephani (Gandolfi). – (Canton Ticino, Switzerland) deposited in the Loeblich Robaszynski & Caron, p. 47, 50, pl. 48, figs 1- and Tappan Topotype Collection, NMNH; hypotypes from 3. the upper Albian-lower Turonian sediments of the ODP 1979 Praeglobotruncana stephani (Gandolfi). – Mc- Hole 1050C - Huber Collection, NMNH; hypotypes from Nulty, pl. 2, figs 7-10. the upper Albian-lower Cenomanian sediments of the 1980 Praeglobotruncana stephani (Gandolfi). – Peryt, ODP Hole 1052E - Huber Collection, NMNH; hypotypes p. 58, pl. 13, figs 7-9. from the upper Albian-lower Turonian of the DSDP Site 1980 Rotundina stephani (Gandolfi). – Salaj, pl. 7, 463; hypotypes from the upper Albian-Turonian sediments figs 1-2, 5. of the Romanian western Black Sea offshore - PETROMAR 1980 Praeglobotruncana marginaculeata (Loeblich Collections. and Tappan). – Salaj, pl. 7, fig. 6, pl. 8, figs 1- 2, 4. Description.– Test is medium-high, occasionally high tro- 1984 Praeglobotruncana stephani (Gandolfi). – Wei- chospiral, consisting of 14 to 16 chambers arranged in 2 dich, p. 92, pl. 10, figs 4-7. ½ to 3 whorls (Pl. 1, Figs 12-13, 16); 5 to 6 ½ (commonly 1984 Praeglobotruncana stephani (Gandolfi). – 5 ½ to 6) chambers in the final whorl (Pl. 1, Figs 10, 12- Leckie, p. 600, pl. 12, figs 9-12. 13, 15-16, 18). Earlier chamber are globular and often in- 1985 Praeglobotruncana stephani (Gandolfi). – distinct due to the successive calcite layers added during Leckie, p. 143, pl. 2, figs 9-10, 12-13. the ontogenetic development (Pl. 1, Figs 12-13, 16); the 1985 Praeglobotruncana stephani (Gandolfi). – chambers of the final whorl are axially compressed (Pl. 1, Caron, p. 65, fig. 30:5-6. Figs 11, 14, 17), increase slowly in size and have variable 1986 Praeglobotruncana stephani (Gandolfi). – Pre- overlapping (Pl. 1, Figs 10, 12-13, 15-16, 18). Chamber moli Silva & Sliter, pl. 4, figs 1-3. shape is petaloid on the spiral side (Pl. 1, Figs 12-13, 16) 1986 Praeglobotruncana gibba Klaus. – Premoli Silva and subtriangular to subtrapezoidal on the umbilical side & Sliter, pl. 4, figs 13-15. (Pl. 1, Figs 10, 15, 18). Sutures between the earlier cham- 1997 Praeglobotruncana stephani (Gandolfi). – Lip- bers on the spiral side are lined by ridges formed by fused son-Benitah et al., fig. 13: 8. pustules and depressed, curved and oblique to the previ- 1997 Praeglobotruncana stephani (Gandolfi). – Lam- ous whorl between the last formed chambers (Pl. 1, Figs olda et al., fig.6: s, t. 12-13, 16); sutures on the umbilical side are distinct, de- 2000 Praeglobotruncana stephani (Gandolfi). – pressed and radial (Pl. 1, Figs 10, 15, 18). Tests asymmet- Petrizzo, fig. 9: 4. rical in edge view, with convex spiral side and slightly 2000 Praeglobotruncana stephani (Gandolfi). – concave umbilical side (Pl. 1, Figs 11, 14, 17); periphery Georgescu, p. 166, pl. 2, figs 7-8. subangular to pinched and with irregular agglomerations 2001 Praeglobotruncana stephani (Gandolfi). – of fused pustules or an incipient keel on the earlier cham- Petrizzo, fig. 8: 3. bers; there are no peripheral structures over the last

181 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011 formed one or two chambers (Pl. 1, Figs 11, 14, 17). Aper- the penultimate whorl and between the earlier chambers ture is a low opening, extraumbilical-umbilical in posi- of the final one in the FDS and SDS; sutures on the umbil- tion and bordered by an imperforate lip, which is often ical side are depressed, straight and radial. Tests are asym- broken (Pl. 1, Figs 10, 15, 18). Umbilicus is small and metrical in edge view, with spiral side of variable shallow, with a diameter of approximately one fifth to one convexity and slightly concave umbilical side. Periphery fourth of the maximum test diameter; no relict periaper- is rounded to subangular in the IS and subangular to trun- tural structures occur in the umbilicus (Pl. 1, Figs 10, 15, cate in the FDS and SDS. Peripheral structures exhibit in- 18). Chamber surface is ornamented with scattered dome- creased complexity along the lineage and, in the IS consist like pustules (5.9-15.4 µm), which are denser over the ear- of an agglomeration of pustules that can fuse occasionally lier chambers (Pl. 1, Figs 10-18). Test wall is calcitic, and a wide keel consisting of agglomerated pustules that hyaline, simple and perforate; pores are circular, 1.1 to can occasionally fuse in the FDS and SDS; an occasional 2.9 µm in diameter. row of pustules on the umbilical side and parallel to the periphery in the FDS and SDS result in a double keeled Remarks.– Praeglobotruncana stephani differs from its an- appearance. Main aperture is a low to medium-high open- cestor, P. delrioensis, by having (i) higher tests, (ii) periph- ing, variable in position in the IS (umbilical-extraumbilical ery with an incipient keel over the earlier chambers, (iii) to extraumbilical-umbilical) and extraumbilical-umbilical ornamentation consisting of smaller pustules (5.9-15.4 µm in the FDS and SDS. An imperforate triangular flap bor- rather than 8.4-22.6 µm) and (iv) larger pores (1.1 to 2.9 ders the aperture in the IS; the most complex periapertural µm rather than 1.0-2.3 µm); apparently a reduction in the structures, consisting of imperforate triangular flap or por- pustule diameter and density over the chamber surface re- ticus that merge in the umbilical region, are developed in sults with the development of an incipient peripheral keel. the FDS and SDS. Umbilicus is medium-sized, with the diameter of approximately one fourth to one third of the Stratigraphic range.– Uppermost Albian-upper Cenoman- maximum test diameter; relict periapertural structures ian (from the P. appenninica Biozone to the lower part of occur in the umbilical region. Chambers are ornamented R. cushmani Biozone). with scattered dome-like pustules; symmetrical ornamen- tation occurs in the IS and the FDS and SDS present asym- Geographic distribution.– Cosmopolitan. metrical ornamentation, with bigger pustules on the umbilical side and smaller on the spiral side. Test wall is calcitic, hyaline simple in the IS and simple to ridged in Genus/DL: Bermudeziana – new the FDS and SDS and perforate; pore diameter is smaller in the IS. Type species: Bermudeziana hilalensis (Barr, 1972).

Species included. B. aumalensis (Sigal, 1952b) – IS, B. Plate 1. Specimens of the species Hedbergella delrioensis (Carsey, 1926), turbinata (Reichel, 1950) – FDS and B. hilalensis (Barr, Praeglobotruncana delrioensis (Plummer, 1931) and P. stephani (Gan- dolfi, 1942). 1-3, Hypotype of H. delrioensis from the lower Cenoman- 1972) – SDS. ian sediments (T. globotruncanoides Biozone) of the Blake Plateau (western North Atlantic Ocean) Sample 171B-1050C-26-4, 140-146 cm. Description.– Test is trochospiral; trochospire height grad- 4-6, Topotype of P. delrioensis from the del Rio Clay (Travis County, Texas); specimen from the Loeblich and Tappan Topotype Collection, ually increases from low to medium-high in the IS to NMNH, USNM 479644. 7-9, Topotype of P. delrioensis from the del Rio medium-high to high in the FDS and SDS. Earlier cham- Clay (Travis County, Texas); specimen from the Loeblich and Tappan bers are globular, the last formed ones axially compressed; Topotype Collection, NMNH (USNM 479644). 10-12, Topotype of P. stephani from the Cenomanian sediments of Breggia (Canton Ticino, the number of axially compressed chambers increases Switzerland). Specimen identified by Dr M. Reichel and deposited in the from the IS to FDS and SDS. Chamber shape is variable on Loeblich and Tappan Topotype Collection, NMNH (USNM 478320). 13- 15, Hypotype of P. stephani from the uppermost Albian sediments (P. ap- the spiral side, from petaloid in the IS and FDS to petaloid penninica Biozone) of the Blake Plateau (western North Atlantic Ocean), to subtrapezoidal in the SDS; chambers are subtriangular Sample 171B-1052E-40-4, 95-99 cm. 16-18,Hypotype of P. stephani to subrectangular on the umbilical side. Sutures on the from the lower Cenomanian sediments (T. globotruncanoides Biozone) of the Blake Plateau (western North Atlantic Ocean), Sample 171B- spiral side are depressed throughout in the IS and raised in 1050C-26-4, 140-146 cm.

182 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 1

183 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Remarks.– The new directional lineage Bermudeziana dif- 1990 Whiteinella aumalensis (Sigal) div. form. – fers from Praeglobotruncana by having (i) the main aper- González Donoso & Linares in Robaszynski et ture bordered by an imperforate triangular flap, which, in al., pl. 29, fig. 3, pl. 30, fig. 1 (only). the SDS evolves in a porticus rather than an imperforate 1997 Praeglobotruncana aumalensis (Sigal). – La- lip or occasionally a triangular flap, (ii) periphery with molda et al., figs d, h. well-developed keel and occasionally with double keeled 1997 Globotruncanella aumalensis (Sigal). – Lipson- appearance, (iii) larger umbilici (one fourth to one third Benitah et al., fig. 13: 10-11. rather than one fifth to one fourth of the maximum test di- 1999 Praeglobotruncana aumalensis (Sigal). – Huber ameter), (iv) ornamentation consisting of denser pustules, et al., pl. 1, figs 14-16. which exhibits an asymmetrical pattern in the first and 2004 Praeglobotruncana aumalensis (Sigal). – Keller SDS and (v) larger pores. Bermudeziana and Prae- & Pardo, pl. 2, figs 6-8. globotruncana evolved from different ancestors (Whitei- Material and its provenance.– Circa 90 specimens. Hypo- nella and Hedbergella respectively), at different time (late types from the lower Turonian sediments of the ODP Hole Cenomanian rather than late Albian) and have different 1050C - Huber Collection, NMNH; hypotypes from the extinction timing (Coniacian rather than late Cenoman- upper Cenomanian-lower Turonian sediments of the ian). DSDP Site 463. Derivation.– Genus/directional lineage named in honour Description.– Test low to medium-high trochospiral con- of Dr Pedro J. Bermúdez who realized for the first time the sisting of 16 to 18 chambers arranged in 2 ½ to 3 ½ taxonomical significance of the praeglobotruncanid test whorls; 6 to 7 (commonly 6 to 6 ½) chambers in the final architecture. The suffix “–iana” is added to his name. whorl (Pl. 2, Figs 1, 3-4, 6-7, 9). Earlier chambers are glob- Stratigraphic range.– Upper Cenomanian-lower Coniacian ular or subglobular; the last formed chambers in the final (from the R. cushmani Biozone to D. concavata Biozone). whorl petaloid on the spiral side (Pl. 2, Figs 1, 4, 7) and subtriangular to subrectangular on the umbilical side (Pl. Geographic distribution.– Cosmopolitan. 2, Figs 3, 6, 9), the last formed ones axially compressed (Pl. 2, Figs 2, 5, 8) and slightly tilted towards the umbili- cal side (Pl. 2, Fig. 8). Sutures are distinct and depressed, Species/IS: Bermudeziana aumalensis (Sigal, 1952b) slightly curved in the growth direction on the spiral side (Plate 2, Figs 1-9) (Pl. 2, Figs 1, 4, 7) and radial on the umbilical side (Pl. 2, Figs 3, 6, 9); sutures on the spiral side are often obscured 1952b Globigerina aumalensis Sigal, p. 28, fig. 29. by the successively added layers of calcite during the on- 1955 Globotruncana (Rotundina) aumalensis (Sigal). togenetic development. Tests are asymmetrical in edge – Küpper, p. 116, pl. 18, fig. 5. view, with convex spiral side and slightly concave umbil- 1965 Praeglobotruncana aumalensis (Sigal). – Caron, ical side (Pl. 2, Figs 2, 5, 8). Periphery is variable through 1965, fig. 5. ontogeny, from broadly rounded in the earlier chambers to 1969 Praeglobotruncana aumalensis (Sigal). – Por- subangular in the last added chambers; agglomerations of thault, p. 537, pl. 2, fig. 5. pustules, which occasionally fuse, can occur in the pe- 1971 Praeglobotruncana aumalensis (Sigal). – Bellier, ripheral region of the earlier chambers of the final whorl p. 88, pl. 1, fig. 4. (Pl. 2, Figs 2, 5). Aperture is a low to medium-high open- 1979 Praeglobotruncana aumalensis (Sigal). – Ro- ing, umbilical-extraumbilical (Pl. 2, Fig. 3) to extraumbil- baszynski & Caron, p. 25, 28, pl. 42, fig. 1. ical-umbilical (Pl. 2, Figs 6, 9) in position and bordered by 1981 non Praeglobotruncana aumalensis (Sigal). – Pre- an imperforate triangular flap (Pl. 2, Figs 3, 6, 9); succes- moli Silva & Sliter, pl. 1, figs 6-7. sive flaps do not fuse. Umbilicus is medium-wide, its di- 1986 Praeglobotruncana aumalensis (Sigal). – Pre- ameter representing approximately one fourth to one third moli Silva & Sliter, pl. 4, figs 4-5, 8-10. of the maximum test diameter (Pl. 2, Figs 3, 6, 9); relict

184 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian) periapertural flanges can occur in the umbilical region. 1957 Globotruncana (Globotruncana ?) stephani stephani Cambers ornamented with scattered dome-like pustules Gandolfi. – Gandolfi, p. 62, pl. 9, fig. 4. (8.4-20.1 µm), which are denser over the earlier chambers 1960 Praeglobotruncana stephani var. gibba Klaus, p. (Pl. 2, Figs 1-9); pustules can fuse to form rugosities. Test 304. wall is calcitic, hyaline, simple and perforate; pores are 1960 Praeglobotruncana oraviensis Scheibnerová, p. 85, circular, with a diameter of 1.6-3.2 µm. text-fig. 4. 1960 Praeglobotruncana oraviensis subsp. trigona Remarks.– Bermudeziana aumalensis differs from P. delri- Scheibnerová, p. 86, text-fig. 5. oensis mainly by having (i) the test composed of more 1962 “Praeglobotruncana” stephani turbinata (Reichel). chambers (16 to 18 rather than 14 to 16), (ii) wider umbil- – Samuel, p. 187, pl. 11, fig. 2. ical region, (iii) aperture bordered by a flap rather than a 1962 “Praeglobotruncana” oraviensis Scheibnerová. – narrow lip and (iv) larger pores (1.6-3.2 µm rather than Samuel, p. 187, pl. 9, figs 4-5. 1.0-2.3 µm). It differs from P. stephani mainly by having (i) 1962 “Praeglobotruncana” oraviensis trigona Scheib- larger umbilicus, (ii) aperture bordered by a flap rather nerová. – Samuel, p. 189, pl. 10, fig. 1. than a narrow lip and (iii) larger pores (1.6-3.2 µm rather 1969 Praeglobotruncana prahovae Neagu, p. 144, pl. than 1.1 to 2.9 µm). The ancestor of B. aumalensis is not 21, figs 11-13, pl. 22, figs 4-6, 9-11, pl. 23, figs 4- precisely known but the ornamentation consisting scat- 10, pl. 24, figs 1-9. tered pustules and periapertural structures consisting of 1963 Globotruncana stephani turbinata (Reichel). – flaps indicate a whiteinellid ancestry. Küpper, p. 632, pl. 2, fig. 7. 1965 Praeglobotruncana stephani gibba Klaus. – Caron, Stratigraphic range.– Upper Cenomanian-lower Turonian figs 1, 4. (from the R. cushmani Biozone to the H. helvetica Bio- 1966 Praeglobotruncana stephani gibba Klaus. – Caron, zone). p. 73, pl. 2, fig. 4. 1966 Praeglobotruncana oraviensis Scheibnerová. – Geographic distribution.– Cosmopolitan. Salaj & Samuel, p. 192, pl. 14, fig. 4. 1966 Praeglobotruncana oraviensis trigona Scheibnerová. Species/FDS: Bermudeziana turbinata (Reichel, 1950) – Salaj & Samuel, 1966, p. 193, pl. 15, fig. 1. (Plate 2, Figs 10-18; Plate 3, Figs 1-9) 1967 Praeglobotruncana stephani var. turbinata Reichel. – Prosnyakova, p. 4, pl. 1, fig. 2. 1942 Globotruncana apenninica var. Gandolfi, p. 118, 1968 Praeglobotruncana oraviensis Scheibnerová. – text-fig. 41: 2a-b. Scheibnerová, p. 62, pl. 8, figs 5-6. 1950 Globotruncana (Globotruncana) stephani var. 1969 Praeglobotruncana stephani gibba Klaus. – Neagu, turbinata Recihel, p. 609. p. 141, pl. 20, figs 7-12, pl. 21, figs 1-2. 1950 Globotruncana stephani turbinata (Reichel). – 1971 Praeglobotruncana turbinata (Reichel). – Postuma, Mornod, p. 588, pl. 15, figs 18a-j, 19-20, text-fig. p. 74-75, unnumbered figs. 11. 1972 Praeglobotruncana oraviensis Scheibnerová. – 1954 Globotruncana stephani turbinata (Reichel). – Gawor-Biedowa, p. 75, pl. 8, fig. 5. Hagn & Zeil, p. 34, pl. 2, fig. 2, pl. 5, figs 3-4. 1977 Praeglobotruncana stephani gibba Klaus. – Petters, 1959 Globotruncana stephani turbinata (Reichel). – pl. 5, figs 9-10. Klaus, p. 795, pl. 6, fig. 3. 1979 Praeglobotruncana gibba Klaus. – Robaszynski & 1956 Globotruncana (Praeglobotruncana) stephani Caron, p. 33, 38, pl. 44, figs 1-2. (Gandolfi) turbinata (Reichel). – Küpper, p. 43, pl. 1980 Praeglobotruncana gibba Klaus. – Salaj, pl. 7, figs 8, fig. 1. 11-12. 1956 Marginotruncana turbinata (Reichel). – Hofker, p. 1980 Praeglobotruncana oraviensis oraviensis Scheib- 324, figs 9-10. nerová. – Salaj, pl. 9, figs 4-5.

185 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

1980 Praeglobotruncana oraviensis trigona Scheibnerová. part by a ridge consisting of closely-spaced pustules, – Salaj, pl. 9, fig. 6. which are occasionally fused (Pl. 2, Figs 10, 13, Pl. 3, Figs 1983 Praeglobotruncana turbinata (Reichel). – Krashenin- 1, 4, 7); sutures on the umbilical side are distinct, de- nikov & Basov, p. 805, pl. 7, fig. 10. pressed, straight to slightly curved and radial (Pl. 2, Figs 1983 Praeglobotruncana aff. oraviensis Scheibnerová. – 12, 15, 18, Pl. 3, Figs 3, 6, 9). Tests are asymmetrical in Krasheninnikov & Basov, p. 805, pl. 8, figs 8-12. edge view; spiral side is distinctly convex and the umbil- 1984 Praeglobotruncana turbinata (Reichel). – Weidich, ical side slightly concave (Pl. 2, Figs 11, 14, 17, Pl. 3, Figs p. 92, pl. 10, figs 8-16. 2, 5, 8). Periphery is variable, subangular to pinched, 1985 Praeglobotruncana gibba Klaus. – Caron, p. 65, fig. rarely subrounded. A wide keel consisting of an agglom- 30: 5-6. eration of pustules, which fuse occasionally, is developed 1986 Praeglobotruncana gibba Klaus. – Premoli Silva & on the earlier chambers and is less developed or absent on Sliter, pl. 4, figs 6-7, 11. the last-formed ones (Pl. 2, Figs 11, 14, 17, Pl. 3, Figs 2, 1990 Praeglobotruncana hilalensis (Barr). – González 5, 8); a row of pustules can occur on the earlier chambers, Donoso & Linares in Robaszynski et al., pl. 33, fig. resulting in a double keeled appearance (Pl. 2, Figs 12, 4 (only). 18, Pl. 3, Fig. 3). Aperture is a low to medium-high arch, 1990 Dicarinella oraviensis (Scheibnerová). – González extraumbilical-umbilical in position (Pl. 2, Figs 12, 15, 18, Donoso & Linares in Robaszynski et al., pl. 33, fig. Pl. 3, Figs 3, 6, 9) and bordered by an imperforate trian- 6, pl. 34, figs 1-2, 4, 6, pl. 35, figs 1-3. gular flap or porticus (Pl. 2, Figs. 12, 18, Pl. 3, Figs 3, 6). 1997 Dicarinella oraviensis (Scheibnerová). – Lamolda et Umbilicus is medium-wide, with a diameter representing al., figs q-r. approximately one fourth to one third of the maximum 2000 Praeglobotruncana gibba Klaus. – Petrizzo, fig. 9: 5. test diameter; relict periapertural structures (i.e., flaps) 2001 Praeglobotruncana gibba Klaus. – Petrizzo, fig. 8: 2. occur in the umbilical region (Pl. 2, Figs 12, 15, 18, Pl. 3, 2001 Praeglobotruncana gibba Klaus. – Keller et al., fig. Figs 3, 6, 9). Ornamentation consists of dome-like pus- 7: 7-8. tules, which are asymmetrically distributed over the two 2001 Praeglobotruncana gibba Klaus. – Tur et al., fig. 10: 1. chamber sides; bigger (7.1-21.4 µm) and denser pustules 2004 Praeglobotruncana gibba Klaus. – Keller & Pardo, occur on the earlier chambers on the umbilical side, pl. 2, figs 12-16. whereas smaller (5.0-18.0 µm) and rarer pustules occur 2005 Praeglobotruncana gibba Klaus. – Bak et al., fig. 5: on the spiral side chambers (Pl. 2, Figs 10, 13, 16, Pl. 3, G-I. Figs 1, 4, 7). Test wall is calcitic, hyaline, simple or with ridged appearance and perforate; pores are circular or el- Material and its provenance.– Circa 85 specimens. Hypo- liptical, 1.1-5.4 µm in maximum dimension. types from the lower Turonian sediments of the ODP Hole 1050C - Huber Collection, NMNH; hypotypes from the upper Cenomanian-lower Turonian sediments of the Plate 2. Specimens of Bermudeziana aumalensis (Sigal, 1952b) and B. DSDP Site 463. turbinata (Reichel, 1950). 1-3, Hypotype of B. aumalensis from the lower Turonian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 17-19 Description.– Test medium-high to high trochospiral, con- cm. 4-6, Hypotype of B. aumalensis from the lower Turonian sediments sisting of 17 to 19 chambers arranged in 3 to 3 ½ whorls; (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 10-12 cm. 7-9, Hypotype of 6 to 7 ½ (commonly 6 ½ to 7) chambers in the final whorl B. aumalensis from the lower Turonian sediments (upper part of the H. (Pl. 2, Figs 10, 12-13, 15-16, 18, Pl. 3, Figs 1, 3-4, 6-7, 9). helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pa- Earlier chambers are globular, those of the final whorl cific Ocean), Sample DSDP 62-463-33-2, 52-54 cm. 10-12, Hypotype of B. turbinata from the lower Turonian sediments (H. helvetica Biozone) petaloid (Pl. 2, Figs 10, 13, 16, Pl. 3, Figs 1, 4, 7), axially of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample compressed (Pl. 2, Figs 11, 14, 17, Pl. 3, Figs 2, 5, 8), with DSDP 62-463-34-3, 50-53 cm. 13-15, Hypotype of B. turbinata from the lower Turonian sediments (H. helvetica Biozone) of the Mid-Pacific slow size increase and variable overlapping. Chamber Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463- shape on the umbilical side is subtriangular to subrectan- 34-3, 50-53 cm. 16-18, Hypotype of B. turbinata from the lower Turon- gular (Pl. 2, Figs 12, 15, 18, Pl. 3, Figs 3, 6, 9). Sutures on ian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 10-12 the spiral side are curved and lined towards the anterior cm.

186 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 2

187 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Remarks.– Bermudeziana turbinata differs from its ances- 2000 Praeglobotruncana hilalensis Barr. – Petrizzo, p. tor, B. aumalensis by having (i) higher tests, (ii) periphery 500, fig. 9: 6. with a keel consisting of an agglomeration of pustules 2001 Praeglobotruncana hilalensis Barr. – Petrizzo, fig. rather than simple, (iii) asymmetrical distribution of pus- 8: 6. tules on the two test sides, (iv) test wall with ridged ap- pearance over the earlier chambers of the final whorl and Material and its provenance.– Circa 35 specimens. Holo- (v) larger pores (1.1-5.4 µm rather than 1.6-3.2 µm). The type of Bermudeziana hilalensis (Barr, 1972) from the test wall with ridged appearance resembles that described Hilal Shale of Wadi al Qalah, deposited in the Cushman in the hedbergellid species Hillsella hillsi Georgescu, Collection, NMNH; lower Turonian sediments of the ODP 2008 of the upper Turonian. However, the ridged wall in Hole 1050C - Huber Collection, NMNH. B. turbinata only occurs on the earlier test chambers and Description.– Test is medium-high to high trochospiral on the spiral side and this pattern contrasts with the uni- consisting of consisting of 17 to 20 chambers arranged in form ridged wall in H. hillsi; the last-formed chambers 3 to 3 ½ whorls; 5 ½ to 7 (commonly 6 to 6 ½) chambers have simple wall, which is similar in appearance to that of in the final whorl (Pl. 3, Figs 10, 12-13, 15-16, 18, Pl. 4, its ancestor. The test wall terminology proposed by Figs 1, 3-4, 6-7, 9). Earlier chambers are globular to sub- Georgescu (2010d) fi followed herein. Bermudeziana globular; the last formed chambers are axially compressed turbinata differs from P. stephani by having (i) the aperture (Pl. 3, Figs 11, 14, 17, Pl. 4, Figs 2, 5, 8), petaloid to sub- bordered by a flap rather than a narrow lip, (ii) asymmet- trapezoidal on the spiral side (Pl. 3, Figs 10, 13, 16, Pl. 4, rical ornamentation with bigger and denser pustules on Figs 1, 4, 7) and subtriangular to subtrapezoidal on the the umbilical side, (iii) test wall with ridged appearance on umbilical side (Pl. 3, Figs 12, 15, 18, Pl. 4, Figs 3, 6, 9). the earlier chambers and on the spiral side and (iv) larger Sutures on the spiral side are curved and lined towards pores (1.1-5.4 µm rather than 1.1 to 2.9 µm). A phyloge- the anterior part by a ridge consisting of closely-spaced netic relationship between P. stephani as ancestor and B. pustules, which are often fused resulting in a keeled ap- turbinata as descendant cannot be demonstrated; the two pearance (Pl. 3, Figs 10, 13, 16, Pl. 4, Figs 1, 4, 7); sutures species independently developed higher trochospire but on the umbilical side are distinct, depressed, straight to the test wall, ornamentation pattern, umbilical diameter slightly curved, radial (Pl. 3, Figs 12, 15, 18, Pl. 4, Figs 3, and periapertural structures indicate they belong to differ- 6, 9). Tests are asymmetrical in edge view, with strongly ent lineages. convex spiral side and slightly concave to nearly flat um- bilical side (Pl. 3, Figs 11, 14, Pl. 4, Figs 2, 5, 8). Periph- Stratigraphic range.– Upper Cenomanian-Turonian (from ery is subangular to pinched and with a wide keel the R. cushmani Biozone to the M. schneegansi Biozone).

Geographic distribution.– Cosmopolitan. Plate 3. Specimens of Bermudeziana turbinata (Reichel, 1950) and B. hilalensis (Barr, 1972). 1-3, Hypotype of B. turbinata from the lower Tur- onian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 10-12 Species/SDS: Bermudeziana hilalensis (Barr, 1972) cm. 4-6, Hypotype of B. turbinata from the lower Turonian sediments (Plate 3, Figs 10-18; Plate 4, Figs 1-9) (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 10-12 cm. 7-9, Hypotype of B. turbinata from the lower Turonian sediments (H. helvetica Biozone) of 1972 Praeglobotruncana hilalensis Barr, p. 15, pl. 2, fig. the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample 4. DSDP 62-463-34-3, 50-53 cm. 10-12, Holotype of B. hilalensis from the 1977 Marginotruncana pileoliformis Lamolda, p. 472, upper Hilal Shale (Wadi al Qalah, northern Cyrenaica Province, Libya); specimen originally figured by Barr (1972, pl. 2, fig. 4) and deposited in pl. 1, figs 2-3, pl. 2, figs 1-2, (?) text-fig. 5. the Cushman Collection, NMNH (USNM 167852); illustrations from the 1980 Praeglobotruncana hilalensis Barr. – Peryt, p. 57, online Mesozoic Planktonic Foraminifera Taxonomic Dictionary, www.chronos.org. 13-15, Hypotype of B. hilalensis from the lower Tur- pl. 12, fig. 3. onian sediments (H. helvetica Biozone) of the Blake Plateau (western 1990 Praeglobotruncana hilalensis Barr. – González North Atlantic Ocean), Sample 171B-1050C-20-3, 38-41 cm. 16-18, Donoso & Linares in Robaszynski et al., pl. 33, fig. Hypotype of B. hilalensis from the lower Turonian sediments (H. hel- vetica Biozone) of the Blake Plateau (western North Atlantic Ocean), 3 (only). Sample 171B-1050C-20-2, 58-61 cm.

188 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 3

189 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011 consisting of agglomerated pustules that can fuse. The pe- Genus/DL: Fingeria Georgescu, 2010c – emended ripheral structures are more prominent on the earlier chambers and weaker over the test last-formed chambers Type species: Fingeria kingi (Trujillo, 1960). (Pl. 3, Figs 11, 14, 17, Pl. 4, Figs 2, 5, 8); a row of pustules 2010c Fingeria Georgescu, p. 151. is occasionally developed over the earlier chambers of the final whorl, resulting in a double-keeled appearance (Pl. Species included. F. loetterlei (Nauss, 1947) – IS, F. kingi 2, Fig. 12, Pl. 4, Figs 6, 9). Aperture is a low to medium- (Trujillo, 1960) – FDS and F. praeglobotruncaniformis new high opening, extraumbilical-umbilical in position (Pl. 3, species – SDS. Figs 15, 18, Pl. 4, Figs 3, 6, 9) and bordered by a well-de- veloped, imperforate triangular flap or porticus (Pl. 3, Fig. Emended description.– Test is trochospiral; trochospire 15, Pl. 4, Figs 3, 6, 9); successive periapertural structures height gradually increases along the lineage, from low to merge occasionally in the umbilical region (Pl. 4, Fig. 3). medium-high in the IS to medium-high to high in the FDS Umbilicus in medium-sized, with a diameter representing and SDS. The test consists of chambers with gradual size approximately one fourth to one third of the maximum increase. Chambers are globular to subglobular through- test diameter (Pl. 3, Figs 12, 15, 18, Pl. 4, Figs 3, 6, 9); out in the IS and FDS. SDS has globular to subglobular relict periapertural structures (i.e., flaps) occur in the um- chambers in the early stage and axially compressed cham- bilicus (Pl. 3, Fig. 18, Pl. 4, Figs 3, 9). Chambers are orna- bers in the adult one. Chamber shape in the adult stage is mented with dome-like pustules, which are petaloid to subtrapezoidal on the spiral side and subtrape- asymmetrically developed and distributed on the test two zoidal on the umbilical side. Sutures are depressed sides. Pustules are smaller (8.1-14.0 µm) on the spiral side throughout, perpendicular to oblique to the previous and mostly concentrated towards the anterior part of the whorl on the spiral side and straight and radial on the um- chamber, in the proximity of the sutural ridge (Pl. 3, Figs bilical side. Test is asymmetrical in edge view, with con- vex spiral side and slightly concave umbilical side. 10, 16, Pl. 4, Figs 1, 4, 7); they are more prominent over Periphery is broadly rounded in the IS and FDS and sub- the earlier chambers due to the successively added cal- angular to truncate in the adult stage of the SDS; a weak cite layers. Pustules are bigger (9.4-24.2 µm) on the um- keel consisting of fused pustules occurs on the penulti- bilical side and denser on the earlier chambers of the final mate whorl and earlier chambers of the last whorl in the whorl. Test wall is calcitic, hyaline, simple or occasion- SDS. Main aperture is a low to medium-high opening, ally with ridged appearance over the earlier chambers of umbilical-extraumbilical in the IS and FDS and extraum- the spiral side and perforate; pores circular to elliptical, bilical-umbilical in the SDS. An imperforate triangular flap 1.6-4.1 µm in maximum dimension. borders the aperture; successive flaps do not merge in the Remarks.– Bermudeziana hilalensis differs from its ances- umbilical region. Umbilicus increases gradually in size tor, B. turbinata, mainly by having higher tests. It differs along the lineage, up to approximately one half of the from B. aumalensis mainly by having (i) higher tests, (ii) maximum test diameter in the SDS; relict periapertural well-developed peripheral structures and (iii) larger (1.6- structures occur in the umbilical region. Chamber surface 4.1 µm rather than 1.6-3.2 µm) and more variable (circu- is ornamented with dome-like pustules and rugosities in lar to elliptical rather than circular only) pores. the IS and FDS; costellae occur occasionally in the SDS. Ornamentation with incipient meridional pattern in the Stratigraphic range.– Turonian- lower Coniacian (from the IS, occasionally developed meridional pattern over some H. helvetica Biozone to the D. concavata Biozone). chambers in the FDS and asymmetrical ornamentation, parallel to the periphery on the spiral side and meridional Geographic distribution.– Northern Africa (Libya), Europe on the umbilical one, in the SDS. Test wall is calcitic, hya- (Spain), eastern Indian Ocean (Exmouth Plateau) and line and perforate; it is simple in the IS and FDS and sim- western North Atlantic Ocean (Blake Plateau). ple to ridged in the SDS.

190 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Remarks.– Fingeria is emended to accommodate F. prae- 1969 Hedbergella bornholmensis Douglas & Rankin, p. globotruncaniformis, the SDS, a species that shows 193, fig. 6. three major achievements in this directional lineage, 1974 Globigerina cretacea d’Orbigny. – Cañon & Ernst, namely the development of (i) truncate periphery in the p. 82, pl. 4, fig. 3. last-formed chambers, (ii) peripheral structures consist- 1974 Globigerina wenzeli Cañon & Ernst, p. 83, pl. 4, ing of weak keel and (iii) ornamentation with asymmet- fig. 5. rical pattern, parallel to the periphery on the spiral side 1975 Hedbergella loetterlei (Nauss). – North & Cald- and meridional on the umbilical side. Fingeria differs well, pl. 4, fig. 17. from Praeglobotruncana and Bermudeziana mainly by 1976 Whiteinella archaeocretacea Pessagno – Lamolda, having ornamentation consisting of pustules, rugosities p. 18, pl. 1, figs 1-9. and occasionally developed pustules, rather than only 1977 Globigerina loetterlei Nauss. – Masters, p. 464. pustules. 1981 Hedbergella loetterlei (Nauss). – McNeil & Cald- well, p. 254, pl. 21, fig. 1. Stratigraphic range.– Turonian-lower Campanian (from the 1987 Whiteinella sp. A. – Frerichs & Deiss, figs 4: 7, 6: H. helvetica Biozone to G. elevata Biozone). 3. 1987 Whiteinella loetterlei (Nauss). – Frerichs & Deiss, Geographic distribution.– Cosmopolitan. 1987, fig. 6: 2. 2000 Hedbergella murphyi Marianos and Zingula. – Petrizzo & Premoli Silva, pl. 1, figs 1-4. Species/IS: Fingeria loetterlei (Nauss, 1947) 2010c Fingeria loetterlei (Nauss). – Georgescu, p. 6, pl. (Plate 4, Figs 10-15) 1, fig. 6. 1937 Globigerina cretacea d’Orbigny. – Loetterle, p. 44, Material and its provenance.– Circa 430 specimens. Holo- pl. 7, fig. 1 (only). type of Globigerina loetterlei Nauss, 1947 from the Lloy- 1947 Globigerina loetterlei Nauss, p. 336, pl. 49, fig. 11. dminster Shale (Clonmel Well No. 1, Vermillon area, 1951 Globigerina loetterlei Nauss. – Tappan, p. 4, pl. 1, Alberta, Canada) - specimen deposited in the University of fig. 19. California Museum of Paleontology, Berkeley 1953 Rotundina ordinaria Subbotina, p. 186, pl. 3, figs (UCMP48788); holotype of Hedbergella murphyi Mari- 7-9 (only). anos and Zingula, 1966 from the Turonian of Dry Creek 1956 Globigerina cretacea d’Orbigny. – Bolin, p. 292, (Tehama County, California, USA) - specimen deposited pl. 39, figs 4-7, 13, 17 (only). in the Cushman Collection, NMNH, USNM 641539; 1962 Hedbergella loetterlei (Nauss). – Tappan, p. 196, holotype of Hedbergella quadrata Marianos and Zingula, pl. 55, figs 3-5. 1966 from the Turonian of Dry Creek (Tehama County, 1965 Hedbergella loetterlei (Nauss). – Takayanagi, p. California, USA) - specimen deposited in the Cushman 205, pl. 21, fig. 5. Collection, NMNH, USNM 641541; holotype of Hed- 1966 Hedbergella murphyi Marianos & Zingula, p. 336, bergella bornholmensis Douglas and Rankin, 1969 from pl. 38, fig. 5. the Arnager Limestone (Bornholm Island, Denmark) - 1966 Hedbergella quadrata Marianos & Zingula, p. 336, specimen from the Cushman Collection, NMNH, USNM pl. 38, fig. 7. 464651; hypotypes from the upper Cenomanian-Turonian 1966 Hedbergella sp. 2. – Douglas and Sliter, p. 105, pl. sediments of the DSDP Site 463. 1, fig. 1. 1967 Hedbergella loetterlei (Nauss). – Kent, p. 1448, pl. Description.– Test low to medium-high trochospiral con- 183, figs 14-15. sisting of 12 to 14 chambers arranged in 2 ½ to 3 whorls; 1967 Hedbergella loetterlei (Nauss). – Wall, p. 107, pl. 4 to 6 (commonly 5 to 5 ½) chambers in the final whorl 3, figs 13-21. (Pl. 4, Figs 10, 12-13, 15). Chambers are globular to sub- 1969 Hedbergella murphyi Marianos and Zingula. – globular and increase in size at low to high rate resulting Douglas, p. 168, pl. 5, fig. 8. in high outline variability (Pl. 4, Figs 10, 12-13, 15). Su-

191 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011 tures are depressed throughout, straight or slightly curved 1953 Rotundina ordinaria Subbotina, p. 186, pl. 3, fig. 6 (Pl. 4, Figs 10-15). Sutures on the spiral side are perpen- (only). dicular to oblique to the previous whorl (Pl. 4, Figs 10, 1960 Rugoglobigerina kingi Trujillo, 1960, p. 339, pl. 13); those on the umbilical side are radial (Pl. 4, Figs 12, 49, fig. 5. 15). Test is slightly asymmetrical in edge view, with con- 1960 Rugoglobigerina (Rugoglobigerina) plana Belford, vex spiral side and slightly convex umbilical side; periph- p. 95, pl. 27, figs 1-5, text-fig. 8. ery is broadly rounded and without peripheral structures 1965 Rugoglobigerina kingi Trujillo. – Takayanagi, p. or ornamentation thickenings (Pl. 4, Figs 11, 14). Aperture 228, pl. 29, fig. 4. is a low opening, umbilical-extraumbilical in position and 1966 Rugoglobigerina kingi Trujillo. – Marianos & Zin- bordered by an imperforate triangular flap, which is rarely gula, p. 339, pl. 38, fig. 6. preserved (Pl. 4, Figs 12, 15). Umbilicus is small to 1967 Rugoglobigerina sp. – Burckle et al., fig. 2: 4. medium-sized, with a diameter of approximately one fifth 1967 Archaeoglobigerina bosquensis Pessagno, p. 316, to one third of the maximum test diameter (Pl. 4, Figs 12, pl. 60, figs 7-12. 15). Chamber surface ornamented with dense dome-like 1968 Rugoglobigerina kingi Trujillo. – Scheibnerová, p. pustules (8.3-15.4 µm); pustules can occasionally fuse to 80, pl. 19, fig. 5. form rugosities. The ornamentation elements can be 1969 Hedbergella kingi (Trujillo). – Douglas, p. 166, pl. aligned but without a well-developed meridional arrange- 4, figs 6-7. ment (Pl. 4, Figs 10, 12-13, 15). Test wall is calcitic, hya- 1969 Archaeoglobigerina bosquensis Pessagno. – Dou- line, simple and perforate; pores are circular, with a glas & Rankin, p. 199, figs 10-11. diameter of 2.3-4.1 µm). 1971 Hedbergella kingi (Trujillo). – Belford & Scheib- nerová, p. 334, pl. 4, figs 10-15. Remarks.– The holotype is in a poor state of preservation 1972 Archaeoglobigerina bosquensis Pessagno. – Han- and covered in the peripheral region with dark coloured zlíková, p. 100, pl. 25, figs 11-13. glue (Georgescu, 2010c). Fingeria loetterlei differs from 1973 Archaeoglobigerina bosquensis Pessagno. – Whiteinella baltica Douglas and Rankin, 1969, W. britto- Frerichs & Adams, p. 192, pl. 2, figs 8-9. nensis (Loeblich and Tappan, 1961) and W. paradubia 1976 Whiteinella kingi (Trujillo). – Lamolda, p. 19, pl. (Sigal, 1952b) mainly by having the ornamentation con- 1, figs 10-23. sisting of pustules and rugosities, which may be aligned, 1977 Archaeoglobigerina bosquensis Pessagno. – Sliter, rather than having pustulose ornamentation consisting of p. 542, pl. 9, figs 3-5. only scattered pustules without any apparent alignment. It 1977 Archaeoglobigerina ? bosquensis Pessagno. – Pet- differs from Costellagerina bulbosa (Belford, 1960) mainly ters, pl. 3, figs 14-15. by lacking the ornamentation consisting of meridionally 1981 Archaeoglobigerina bosquensis Pessagno. – arranged costellae. Frerichs & Dring, p. 68, pl. 3, figs 16-18.

Stratigraphic range.– Turonian (from the H. helvetica Bio- Plate 4. Specimens of Bermudeziana hilalensis (Barr, 1972), Fingeria zone to the M. schneegansi Biozone). loetterlei (Nauss, 1947) and F. kingi (Trujillo, 1960). 1-3, Hypotype of B. hilalensis from the lower Turonian sediments (H. helvetica Biozone) of the Blake Plateau (western North Atlantic Ocean), Sample 171B-1050C- Geographic distribution.– Cosmopolitan. 20-1, 20-21 cm. 4-6, Hypotype of B. hilalensis from the lower Turonian sediments (H. helvetica Biozone) of the Blake Plateau (western North Atlantic Ocean), Sample 171B-1050C-20-3, 38-41 cm. 7-9, Hypotype of B. hilalensis from the lower Turonian sediments (H. helvetica Biozone) of the Blake Plateau (western North Atlantic Ocean), Sample 171B- Species/FDS: Fingeria kingi (Trujillo, 1960) 1050C-20-3, 38-41 cm. 10-12, Hypotype of F. loetterlei from the lower (Plate 4, Fig. 16, Plate 5, Figs 1-6) Turonian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 17-19 cm. 13-15, Hypotype of F. loetterlei from the lower Turonian sediments 1937 Globigerina cretacea d’Orbigny. – Loetterle, p. 44, (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central pl. 7, fig. 2 (only). Pacific Ocean), Sample DSDP 62-463-35-1, 17-19 cm. 16, Hypotype of 1956 Globigerina cretacea d’Orbigny. – Bolin, p. 292, F. kingi from the lower Turonian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP pl. 39, fig. 8. 62-463-35-1, 17-19 cm.

192 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 4

193 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

1981 Archaeoglobigerina bosquensis Pessagno. – ripheral structures or ornamentation thickenings (Pl. 4, Krasheninnikov & Basov, p. 805, pl. 8, figs 1-8. Figs 2, 5). Aperture is a low to medium-high opening, um- 1983 Hedbergella plana Belford. –Belford, pl. 3, figs 6- bilical-extraumbilical in position and bordered by a rarely 11. preserved imperforate triangular flap (Pl. 5, Fig. 3). Umbili- 1985 Archaeoglobigerina bosquensis Pessagno. – Caron, cus is deep and medium-sized, with a diameter represent- p. 43, fig. 16: 5-6. ing approximately one fourth to one third of the maximum 1987 Archaeoglobigerina bosquensis Pessagno. – test diameter (Pl. 4, Figs 3, 6). Chambers ornamented with Frerichs & Deiss, fig. 10: 2. dense dome-like pustules (10.9-16.7 µm) and rarely ru- 1992 Archaeoglobigerina bosquensis Pessagno. – Ols- gosities and faint costellae; ornamentation may present an son & Usmani, p. 313, fig. 7: 1. incipient meridional or parallel to the periphery pattern 1994 Archaeoglobigerina bosquensis Pessagno. – Huber, over the earlier chambers on the dorsal side (Pl. 5, Figs 1, p. 41, pl. 7, figs 1-11. 3-4, 6). Test wall is calcitic, hyaline, simple and perforate; 2000 Archaeoglobigerina bosquensis Pessagno. – pore diameter 1.7-4.9 µm. Petrizzo, fig. 14: 1. 2001 Archaeoglobigerina bosquensis Pessagno. – Remarks.– Fingeria kingi differs from F. loetterlei by hav- Petrizzo, fig. 8: 8. ing (i) larger tests, (ii) more chambers in the final whorl (5 2006 Archaeoglobigerina bosquensis Pessagno. – ½ to 6 rather than 4 to 6) and (iii) more complex orna- Georgescu, fig. 8: 11-13. mentation, which may exhibit occasional costellae over the earlier chambers on the spiral side. Rugoglobigerina Material and its provenance.– Circa 300 specimens. Holo- kingi Trujillo, 1960 and Rugoglobigerina (Rugoglobige- type of Rugoglobigerina kingi (Trujillo, 1960) from the Co- rina) plana Belford, 1960 have the same publication date: niacian of Clover Creek (Shasta County, California, USA) March 31, 1960. The former was validated by Georgescu - specimen deposited in the Museum of Paleontology, (2010c). University of California, Berkeley (UCMP 26778); holo- type of Rugoglobigerina hansbollii (Trujillo, 1960) from Stratigraphic range.– Turonian-lower Campanian (from the the Coniacian of Clover Creek (Shasta County, California, H. helvetica Biozone to the lower part of G. elevata Bio- USA) - specimen deposited in the Museum of Paleontol- zone). ogy, University of California, Berkeley (UCMP 26776); Geographic distribution.– Cosmopolitan. topotypes of Rugoglobigerina plana Belford, 1960 from the lower Santonian Toolonga Calcilultite (Western Aus- tralia) - NMNH, Huber Collection; hypotypes from the Turonian-Lower Campanian sediments of the DSDP Site 463; hypotypes from the Turonian-Lower Campanian sed- iments of the DSDP Site 95.

Description.– Test low to medium-high trochospiral, con- Plate 5. Specimens of Fingeria kingi (Trujillo, 1960) and F. praeglobotrun- sisting of 15 to 19 chambers arranged in 2 ½ to 3 whorls; caniformis – new species. 1-3, Hypotype of F. kingi from the lower Tur- there are 5 ½ to 6 ½ (commonly 6 to 6 ½) chambers in the onian sediments (H. helvetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Ocean), Sample DSDP 62-463-35-1, 17-19 final whorl (Pl. 5, Figs 1, 3-4, 6). Chambers are globular to cm. 4-6, Hypotype of F. kingi from the lower Turonian sediments (H. hel- subglobular and increase in size at low to moderate rate. vetica Biozone) of the Mid-Pacific Mountains (equatorial Central Pacific Sutures are depressed throughout, straight or slightly Ocean), Sample DSDP 62-463-34-3, 50-53 cm. 7-9, Topotype of F. prae- globotruncaniformis from the upper Santonian sediments (D. asymetrica curved on both test sides; sutures on the spiral side are Biozone) of the Yucatan Outer Shelf (offshore Mexico). Sample DSDP perpendicular to slightly oblique to the previous whorl (Pl. 10-95-15-4, 99.5-100.5 m. 10-15, Holotype of F. praeglobotruncani- formis from the upper Santonian sediments (D. asymetrica Biozone) of 5, Figs 1, 4), those of the umbilical side radial (Pl. 5, Figs the Yucatan Outer Shelf (offshore Mexico). Sample DSDP 10-95-15-3, 3, 6). Test is asymmetrical in edge view, with the spiral 101-102.5 m. 14, Detail micrograph showing the umbilical system con- side convex and slightly flattened and umbilical side sisting of imperforate flaps. 15, Detail micrograph on the spiral side showing the pustules and rugosities with incipient meridional ornamen- slightly concave; periphery broadly rounded, without pe- tation.

194 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 5

195 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Species/SDS: Fingeria praeglobotruncaniformis – new asymmetrical in edge view, with a strongly convex spiral (Plate 5, Figs 7-15, Plate 6, Figs 1-8) side and slightly concave umbilical side (Pl. 5, Figs 8, 11, Pl. 6, Figs 2, 7). Periphery is broadly rounded in the ear- Holotype.– WKB 010128. lier stage and subangular to truncate in the adult; a weak keel consisting of agglomerated pustules is often devel- Holotype dimensions.– Maximum diameter: D =0.434 max oped at the periphery of the penultimate whorl and earlier mm; minimum diameter: D =0.404 mm; D /D = min min max chambers of the final whorl (Pl. 5, Figs 7, 10, Pl. 6, Fig. 6). 0.931; thickness: T=0.234 mm; T/D =0.539; umbilical max Aperture is a medium-high arch, extraumbilical-umbilical diameter UD=0.194 mm; UD/D =0.447. max in position and bordered by a triangular imperforate tri- Paratypes.– Five specimens, WKB 010129-010133. angular flap (Pl. 5, Figs 9, 12, 14, Pl. 6, Figs 3-4, 8). Um- bilicus is deep and medium-sized, with a diameter representing approximately one third to one half of the Dimensions.– Dmax=0.370-0.434 mm; Dmin=0.345-0.404; test maximum diameter; relict periapertural structures Dmin/Dmax=0.847-0.932; T=0.182-0.234 mm; T/Dmax= occur in the umbilical region (Pl. 5, Figs 9, 12, 14, Pl. 6, 0.434-0.539; UD=0.137-0.194; UD/Dmax=0.323-0.484. Average ranges based on the measurements of 12 speci- Figs 3-4, 8). Chamber surface is ornamented with scat- mens: holotype, paratypes and topotypes. tered dome-like pustules (6.2-16.3 µm), which can fuse to form short rugosities (20.1-25.8 µm in length) or, more Type locality.– Yucatan Outer Shelf; geographical coordi- rarely, costellae (24.2-32.3 µm in length); ornamentation nates: 24o 09.00’ N and 86o 23.85’ W. occasionally has a meridional pattern on the umbilical side and parallel to the periphery pattern on the spiral side Type level.– DSDP Site 95, Sample 10-95-15-2, 73-87 cm (Pl. 5, Figs 7, 9-10, 12, 15, Pl. 6, Figs 1, 3-5, 8). Test wall (upper Santonian, lower part of the D. asymetrica Bio- is calcitic, hyaline, simple or with ridged appearance and zone). perforate; pores are circular, with a diameter of 1.1-4.2 µm. Material and its provenance.– Circa 35 specimens; holo- type, paratypes and topotypes from the upper Santonian of Remarks.– Fingeria praeglobotruncaniformis differs from F. DSDP Site 95. loetterlei and F. kingi by having (i) axially compressed last- formed chambers, (ii) a weak keel developed on the Derivation.– The suffix “-formis” is added to the genus penultimate whorl and the earlier chambers of the last name Praeglobotruncana, suggesting its praeglobotrun- whorl and (iii) ornamentation that present occasionally canid appearance. has meridional and parallel to the periphery patterns on Diagnosis.– Fingeria species with axially compressed last- formed chambers and subangular to truncate periphery. Plate 6. Specimens of Fingeria praeglobotruncaniformis – new species Description.– Test medium-high to high trochospiral, con- and Globotruncanella havanensis (Voorwijk, 1937). 1-5, Paratype of F. sisting of 14 to 19 chambers arranged in 2 ½ to 3 ½ praeglobotruncaniformis from the upper Santonian sediments (D. asy- metrica Biozone) of the Yucatan Outer Shelf (offshore Mexico). Sample whorls; there are 5 ½ to 6 ½ (mostly 6) chambers in the DSDP 10-95-15-3, 101-102.5 m. 4, Detail micrograph showing the um- final whorl (Pl. 5, Figs 7, 9-10, 12, Pl. 6, Figs 1, 3, 6, 8). bilical system consisting of imperforate portici. 5, Detail micrograph showing the rugosities on the spiral side. 6-8, Topotype of F. prae- Earlier chambers are globular, those of the last whorl globotruncaniformis from the upper Santonian sediments (D. asymetrica petaloid to subtrapezoidal on the spiral side (Pl. 5, Figs 7, Biozone) of the Yucatan Outer Shelf (offshore Mexico). Sample DSDP 10, Pl. 6, Figs 1, 6) and subtrapezoidal and axially com- 10-95-15-4, 99.5-100.5 m. 9-13, Hypotype of G. havanensis from the upper Maastrichtian sediments (A. mayaroensis Biozone) of the Orphan pressed, with low size increase on the umbilical side (Pl. Knoll (North Atlantic Ocean). Sample DSDP 12-111A-11-6, 56-57 cm. 5, 9, 12, Pl. 6, Figs 3, 8). Sutures are depressed through- 12, Detail micrograph showing the subangular periphery without pe- ripheral structures. 13, Detail micrograph showing the last-formed cham- out, straight or slightly curved on both test sides; sutures ber periapertural structure consisting of an imperforate porticus. 14-17, on the spiral side are perpendicular to oblique to the pre- Hypotype of G. havanensis from the upper Maastrichtian sediments (A. vious whorl (Pl. 5, Figs 7, 10, Pl. 6, Figs 1, 6), those on the mayaroensis Biozone) of the Orphan Knoll (North Atlantic Ocean). Sam- ple DSDP 12-111A-11-3, 86-87 cm. 17, Detail micrograph showing the umbilical side radial (Pl. 5, 9, 12, Pl. 6, Figs 3, 8). Test last-formed chamber periapertural structure consisting of a tegillum.

196 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Plate 6

197 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011 the umbilical and spiral side respectively. It differs from B. Geographic distribution.– Caribbean region (Yucatan turbinata by (i) the occasionally developed ornamentation Outer Shelf). patterns on the spiral and umbilical sides, (ii) less devel- oped peripheral keel and (iii) larger umbilicus, which in the adult specimens represents approximately one half of 6. CONCLUSIONS the maximum test diameter. Hedbergella flandrini Porthault in Donze et al., 1970 is a coeval species that re- Morphological reevaluation and taxonomic revision of the sembles F. praeglobotruncaniformis in the axially com- genus Praeglobotruncana shows that the praeglobotrun- pressed chambers. The morphological differences canid test architecture developed independently in three between the two taxa are major and the former species directional lineages, Praeglobotruncana Bermúdez, 1952 presents (i) very low to low rather medium-high to high – emended, Bermudeziana– new and Fingeria Georgescu, trochospire, (ii) simple periphery rather than lined with a 2010c – emended during the late Albian-Santonian (Late weak keel, (iii) aperture bordered by an imperforate lip Cretaceous), through iterative evolution, a widespread rather than an imperforate triangular flap, (iv) narrower pattern among the planktic foraminifera. The prae- umbilici and (v) ornamentation consisting of scattered globotruncanid stage was developed at different evolutive dome-like pustules rather than a combination of pustules, stages in each lineage (Fig. 3). rugosities and costellae with asymmetrical pattern; for these reasons H. flandrini belongs to the hedbergellid A species types system is developed for the evolutionary stock. classification in order to describe the feature evolution within a lineage and compare lineage achievements in the Stratigraphic range.– Upper Santonian (lower part of D. light of iterative evolution pattern. This is a new opened asymetrica Biozone). system in evolutionary classification (i.e., new species

Figure 3. Species evolutionary relationships in the three lineages that developed praeglobotruncanid test appearance (grey) in the late Albian-Santonian.

198 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian) types can be defined with the discovery of new lineage Bermudeziana is the development of a row of pustules on types), which complements that defined at lineage level the earlier chambers on the umbilical side, parallel to the (Georgescu, 2010a). peripheral keel, resulting in a double keeled appearance. The conservative features in this directional lineage are: Genus/directional lineage Praeglobotruncana Bermúdez, (i) chamber shape on the spiral and umbilical sides, (ii) 1952 is emended to accommodate a late Albian-Ceno- umbilicus diameter, and (iii) primary aperture position. A manian lineage consisting of two species: P. delrioensis shift towards an umbilical-extraumbilical position in the (IS) and P. stephani (FDS), which were traditionally in- primary aperture was occasionally observed in the IS; cluded in the genus Praeglobotruncana (Fig. 4). It evolved such variability is probably due to the morphological in- from Hedbergella delrioensis in the late Albian (P. ticinen- stability during the lineage initiation. sis Biozone). This directional lineage shows (i) gradual in- crease in the trochospire height (from low to medium-high The genus Fingeria Georgescu, 2010c is redefined as di- in the IS to medium-high, sometimes high in FDS), (ii) de- rectional lineage in evolutionary classification, and in- velopment of peripheral structures on the earlier cham- cludes F. loetterlei (IS), F. kingi (FDS) and the new species bers of the final whorl (from agglomeration of pustules in F. praeglobotruncaniformis (SDS) (Fig. 6). This lineage ini- the IS to incipient keel in FDS), (iii) reduction in dome- tiated with the development of a meridional ornamenta- like pustule diameter from a maximum of 22.6 µm in the tion pattern on the spiral side. The praeglobotruncanid test IS to 15.4 in the FDS and (iv) an increase in the pore max- appearance occurs only in the SDS and involves signifi- imum diameter from 2.3 µm in the IS to 2.9 µm in FDS. cant changes in (i) chamber shape on the spiral side from Other features appear constant in this directional lineage: globular or subglobular to petaloid and subtrapezoidal, (i) chamber shape on spiral and umbilical sides, (ii) um- (ii) chamber shape on the umbilical side from globular or bilicus size, (iii) main aperture position, (iv) periphery subglobular to subtrapezoidal, (iii) main aperture shift shape and (v) test wall characteristics. The chamber num- from umbilical-extraumbilical position to extraumbilical- ber presents small fluctuations both in range and average umbilical, (iv) periphery shape from broadly rounded to values, a situation that resembles that reported in the truncate in the adult stage, (v) development of a weak keel Anaticinella genus/directional lineage (Georgescu, consisting of agglomerated pustules on the earlier test 2010b). chambers and (vi) occasional occurrence of ridged wall. A new genus/directional lineage, Bermudeziana, is de- Three features develop gradually throughout the Fingeria scribed for a late Cenomanian-early Coniacian lineage, directional lineage: (i) trochospire height, (ii) umbilical di- which evolved from the W. baltica group of species in the ameter and (iii) degree of ornamentation pattern develop- upper part of R. cushmani Biozone. It includes B. au- ment, and no constant features have been identified so far. malensis (IS), B. turbinata (FDS) and B. hilalensis (SDS) (Fig. 5). This directional lineage has (i) gradual increase in There are significant resemblances in the general test ap- the trochospire height (from low to medium-high in the pearance, truncated periphery and periapertural structures BS to medium-high to high in FDS and SDS), (ii) increas- between the praeglobotruncanid species in the three late ing complexity in the periapertural structures (from an im- Albian-Santonian directional lineages and those of the perforate triangular flap in the IS to a flap or porticus, genus Globotruncanella Reiss, 1957 of the late Campan- which can merge in the umbilical areas, in the FDS and ian-Maastrichtian (Pl. 6, Figs 9-17). The description of true SDS), (iii) gradual development of the peripheral structures portici in the FDS and SDS of the directional lineage (from completely absent or with agglomerations of pus- Bermudeziana indicates that the resemblances generated tules on the earlier chambers of the final whorl in the IS to by the iterative process are more gradual than considered a wide keel formed of fused pustules in the FDS and SDS), in the taxonomical frameworks based on Linnaean classi- (iv) development of asymmetrical ornamentation in the fication (Pessagno, 1967; Caron, 1985; Robaszynski et al., FDS and SDS, with larger pustules on the umbilical side) 1984; Loeblich & Tappan, 1987). Therefore, a taxonomi- and (v) development of ridged wall on some chambers in cal revision of the species of Globotruncanella appears the FDS and SDS). A distinct trend in the FDS and SDS of necessary, and will be the topic of a subsequent study.

199 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Figure 4. Key feature morphological changes in the Praeglobotruncana genus/directional lineage – emended.

200 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

Figure 5. Key feature morphological changes in the new directional lineage Bermudeziana.

201 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Figure 6. Key feature morphological changes in the Fingeria genus/directional lineage – emended.

202 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

ACKNOWLEDGMENTS Bellier, J.P. and Salaj, J. 1977. Les Rotundininae, un nouveau taxon de la famille des Globotruncanidae Brotzen, 1942. Actes du VIe Col- loque Africain de Micropaléontologie, Tunis, 1974. Annales des Dr Isabel Rábano (Editor, Revista Española de Micropale- Mines et de la Géologie, Tunis, 28, 319-320. ontología) is thanked for accepting the manuscript for Bermúdez, P.J. 1952. Estudio sistemático de los foraminíferos rotali- publication. The highly constructive reviews by Drs D. formes. Boletín de Geología, Venezuela, 2, 1-230. Grosheny (University of Strasbourg) and D. Zaghbib-Turki Bolin, E.J. 1956. Upper Cretaceous Foraminifera, Ostracoda, and Radi- (University of Tunis) are greatly acknowledged. Drs L.V. olaria from Minnesota. Journal of Paleontology, 30, 278-198. Hills (University of Calgary, Canada) and D. Desmares Bolli, H.M., Loeblich, A.R. Jr. and Tappan, H. 1957. Planktic (Université Pierre et Marie Curie, France) are thanked for foraminiferal families Hantkeninidae, Orbulinidae, Globorotaliidae the presubmittal reviews, which improved significantly the and Globotruncanidae. In: Studies in Foraminifera (Ed. A.R. Jr. Loe- manuscript quality. Drs S. Whittaker (NMNH) and M. blich), United States National Museum Bulletin, 215, 3-50. Schoel (Microscope Imaging Facility, University of Cal- Brönnimann, P. 1952. Globotruncanidae from the Upper Cretaceous gary, Canada) are thanked for the help during the SEM op- (Cenomanian–Maestrichtian) of Trinidad, F.W.I. Bulletins of Ameri- can Paleontology, 140, 1–71. erations. The DSDP/ODP/IODP headquarters are thanked for the samples that yielded most of the material used in Brönnimann, P. and Brown, N.K. Jr. 1953. Observations on some plank- tonic Heterohelicidae from the Upper Cretaceous of Cuba. Contribu- this study. tions from the Cushman Foundation for Foraminiferal Research, 4, 150-156.

Brönnimann, P. and Brown, N.K. Jr. 1956. Taxonomy of the Globotrun- canidae. Eclogae Geologicae Helvetiae, 48, 503-561. REFERENCES Brönnimann, P. and Brown, N.K. Jr. 1958. Hedbergella, a new name for Bak. K., Barski, M. and Bak, M. 2005. High resolution microfossil, mi- a Cretaceous planktonic foraminiferal genus. Journal of the Washing- crofacies and palynofacies studies as the only method in recognition ton Academy of Sciences, 48, 15-17. of the Jurassic and Cretaceous ”black shales” in a strongly tectonised section of the Czorsztyn Succession, Pienniny Klippen Belt, Poland. Brotzen, F. 1942. Die Foraminiferengattung Gavelinella nov.gen. und die In: Methods and Applications in Micropaleontology (Eds. J. Tyszka et Systematik der Rotaliformes. Årsbok Sveriges Geologiska Untersökn- al.), Acta Geologica Polonica, 124, 171-198. ing, ser. C, 36(8), 1-60.

Barr, F.T. 1972. Cretaceous biostratigraphy and planktic foraminifera of Burckle, L.H., Saito, T. and Ewing, M. 1967. A Cretaceous (Turonian) Libya. Micropaleontology, 18, 1-46. core from the Naturaliste Plateau southeast Indian Ocean. Deep-Sea Research, 14, 421-426. Banner, B.T. and Blow, W.H. 1959. The classification and stratigraphical distribution of the Globigerinaceae. Palaeontology, 2, 1-27. Butt, A. A. 1966. Foraminifera of the type Turonian. Micropaleontology, 12, 168-182. Banner, F.T. and Desai, D. 1988. A review and revision of the Jurassic- Early Cretaceous Globigerinina, with especial reference to the Aptian Cañon, A. and Ernst, M. 1974. Magallanes Basin Foraminifera. In: A Sys- assemblage of Speeton (North Yorkshire, England). Journal of Mi- tem of Stages for Correlation of Magallanes Basin Sediments (Eds. cropaleontology, 7, 143-185. Natland, M.L. et al.), The Geological Society of America Memoirs, 139, 61-117. Belford, D.J. 1960. Upper Cretaceous Foraminifera from the Toolonga Calcilutite and Gingin Chalk, Western Australia. Bureau of Mineral Carbonnier, A. 1952. Sur un gisment de Foraminifères d’age Cénoma- Resources, Geology and Geophysics Bulletin, 57, 1-198. nien supérieur provenant de la région de Taza (Maroc). Bulletin de la Société Géologique de France, 2, 111-122. Belford, D.J. 1983. Note on costellate planktonic foraminifera, and the generic designation of Late Cretaceous forms from Western Australia. Caron, M. 1965. Les overtures chez le genre Praeglobotruncana Bureau of Mineral Resources, Geology and Geophysics Bulletin – Pa- (Foraminifères). Comptes Rendus Sommaires de la Seances de la So- leontological Papers, 217, 1-9. ciété Géologique de France, 7, 217-218.

Belford, D.J. and Scheibnerová, V. 1971. Turonian foraminifera from the Caron, M. 1966. Globotruncanidae du Crétacé supérieur du synclinal de Carnarvon Basin, Western Australia and their palaeogeographical sig- la Guryère (Préalpes Médianes, Suisse). Revue de Micropaléontolo- nificance. Micropaleontology, 17, 331-344. gie, 9, 68-93.

Bellier, J.P. 1971. Les foraminifères planctoniques du Turonien-type. Caron, M. 1978. Cretaceous planktonic foraminifers from DSDP Leg 40, Revue de Micropaléontologie, 14, 85-90. southeastern Atlantic Ocean. In: Initial Reports of the Deep Sea Drilling Project, 40, 651-678. Bellier, J.P. and Salaj, J. 1973. Observations sur deux espèces du genre Rotundina Subbotina, 1953, emend. Salaj 1962. Revue de Mi- Caron, M. 1983. Taxonomie et phylogenie de la famille des Globotrun- cropaléontologie, 16, 7-13. canidae. Zitteliana, 10, 677-681.

203 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

Caron, M. 1985. Cretaceous planktic foraminifera. In: Plankton Stratig- Frerichs, W.E. and Dring, N.F. 1981. Planktonic foraminifera from the raphy (Eds. Bolli, H.M. et al.), 17-86. Cambridge, Cambridge Uni- Smoky Hill Shale of West Central Texas. Journal of Foraminiferal Re- versity Press. search, 11, 47-69.

Caron, M. and Luterbacher, H.P. 1969. On some type specimens of Cre- Frerichs, W.E. and Deiss, A.P. 1987. Planktic foraminifera from the type taceous planktonic foraminifera. Contributions from the Cushman area of the Fort Hays Limestone. Contributions to Geology, Univer- Foundation for Foraminiferal Research, 20, 23-29. sity of Wyoming, 25, 11-22.

Carsey, O. 1926. Foraminifera of the Cretaceous of Central Texas. Uni- Gandolfi, R. 1942. Ricerche micropaleontologiche e stratigrafiche sulla versity of Texas Bulletin, 2612, 1-56. scaglia e sul flysch Cretacici dei Dintorni di Balerna (Canton Ticino). Rivista Italiana di Paleontologia, 48, 1-160. Corminboeuf, P. 1962. Association de Belemnitella et de Globotrun- canidae dans le Campanien supérieur des Alpettes (Préalpes externes Gandolfi, R. 1955. The genus Globotruncana in northeastern Colombia. friburgeoises). Eclogae Geologicae Helvetiae, 54, 491-498. Bulletins of American Paleontology, 36(155), 1-119.

Cushman, J.A. 1927. An outline of a re-classification of the foraminifera. Gandolfi, R. 1957. Notes on some species of Globotruncana. Contribu- Contributions from the Cushman Laboratories for Foraminiferal Re- tions from the Cushman Foundation for Foraminiferal Research, 8, search, 3, 1-105. 59-65.

Cushman, J.A. 1928. Additional genera of foraminifera. Contributions Gawor-Biedowa, E. 1972. The Albian, Cenomanian and Turonian from the Cushman Laboratory for Foraminiferal Research, 4, 1-10. foraminifers of Poland and their stratigraphic importance. Acta Palaeontologica Polonica, 17, 3-155. Cushman, J.A. 1948. Foraminifera. Their Classification and Economic Use, 4th edition. Harvard University Press, Cambridge, 605 pp. Gebhardt, H. 2004. Planktonic foraminifera of the Nkalagu Formation type locality (southern Nigeria, Cenomanian-Coniacian): biostratig- Cushman, J.A. and Todd, R. 1948. A foraminiferal fauna from the new Al- raphy and palaeoenvironmental interpretation. Cretaceous Research, maden District, California. Contributions from the Cushman Labora- 25, 191-209. tory for Foraminiferal Research, 24, 90-98. Georgescu, M.D. 2000. Late Albian-Turonian planktic foraminifera in Delage, Y. and Hérouard, E. 1896. Traité de zoologie concrete. Tome I: the Romanian Western Black Sea offshore. Revista Española de Mi- La cellule et les protozoaires. Schleicher Frères, Paris, 584 pp. cropaleontología, 32, 157-173. Donze, P., Porthault, B., Thomel, G. and Villoutreys, O. de 1970. Le Georgescu, M.D. 2006. Santonian-Campanian planktonic foraminifera Sénonien inférieur de Puget-Théniers (Alpes-Maritimes) et sa micro- in the New Jersey coastal plain and their distribution related to the faune. Geobios, 3, 41-106. relative sea- level changes. Canadian Journal of Earth Sciences, 43, 101-120. Douglas, R. 1969. Upper Cretaceous planktonic foraminifera in north- ern California. Part 1 – Systematics. Micropaleontology, 15, 151-209. Georgescu, M.D. 2007. A new planktic heterohelicid foraminiferal genus Douglas, R.G. and Rankin, C. 1969. Cretaceous planktonic foraminifera from the Upper Cretaceous (Turonian). Micropaleontology, 53, 212- from Bornholm and their zoogeographic significance. Lethaia, 2, 220. 185-217. Georgescu, M.D. 2008. A new planktonic foraminiferal taxon of the Douglas, R. and Sliter, W.V. 1966. Regional distribution of some Creta- Family Hedbergellidae Loeblich and Tappan 1961 from the Upper ceous rotaliporidae and globotruncanidae (Foraminiferida) within Cretaceous (Upper Turonian–Coniacian) of the Caribbean region. Is- North America. Tulane Studies in Geology, 4, 89-131. rael Journal of Earth Sciences, 57, 55-63.

Eicher, D.L. 1965. Foraminifera and Biostratigraphy of the Graneros Georgescu, M.D. 2009a. Taxonomic revision and evolutionary classifi- Shale. Journal of Paleontology, 39, 875-909. cation of the biserial Cretaceous planktic foraminiferal genus Laevi- heterohelix Nederbragt, 1991. Revista Mexicana de Ciencias Eicher, D.L. 1966. Foraminifera from the Cretaceous Carlile Shale of Col- Geológicas, 26, 315-334. orado. Contributions from the Cushman Foundation for Foraminiferal Research, 17, 16-31. Georgescu, M.D. 2009b. Upper Albian-lower Turonian non-schackoinid planktic foraminifera with elongate chambers: morphology reevalu- Eicher, D.L. 1973. Phylogeny of the late Cenomanian planktic ation, taxonomy and evolutionary classification. Revista Española de foraminifer Anaticinella multiloculata (Morrow). Journal of Micropaleontología, 41, 255-294. Foraminiferal Research, 2, 184-190. Georgescu, M.D. 2010a. Origin, taxonomic revision and evolutionary Eicher, D.L. and Worstell, P. 1970. Cenomanian and Turonian classification of the late Coniacian-early Campanian (Late Creta- foraminifera from the Great Plains, United States. Micropaleontol- ceous) planktic foraminifera with multichamber growth in the adult ogy, 16, 269-324. stage. Revista Española de Micropaleontología, 42, 59-118.

Eichwald, C.E. von 1830. Zoologia specialis II. D.E. Eichwaldus, Vilnae, Georgescu, M.D. 2010b. Transition from the typological to evolutionary 323 pp. classification of the Cretaceous planktic foraminifera: Case study of Anaticinella Eicher 1973. Micropaleontology, 55, 589-616. Frerichs, W.E. and Adams, P.R. 1973. Correlation of the Hilliard Forma- tion with the Niobrara Formation. Wyoming Geological Association, Georgescu, M.D. 2010c. Evolutionary classification of the Upper Creta- Guidebook, 25th Field Conference, 187-192. ceous (Turonian-lower Campanian) planktic foraminifera with incip-

204 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

ient meridional ornamentation. Journal of Micropaleontology, 29, gie, avec l’étude speciale des Globotruncanidés de l’Albien, du 149-161. Cénomanien et du Turonien. Eclogae Geologicae Helvetiae, 52, 753- 851. Georgescu, M.D. 2010d. A new type of test wall in the Late Cretaceous (late Santonian-Campanian) heterohelicid planktic foraminifera. Klaus, J. 1960. Étude biométrique et statistique de quelques espèces de Revue de Micropaléontologie, 54, 105-114. Globotruncanides: 1. Les espèces du genre Praeglobotruncana dans le Cénomanien de la Breggia (Tessin, Suisse méridionale). Eclogae Georgescu, M.D. and Huber, B.T. 2008. Taxonomic re-evaluation and Geologicae Helvetiae, 53, 285-308. phylogeny of the stellate planktic foraminiferal genus Hastigerinoides Brönnimann, 1952. Journal of Foraminiferal Research, 38, 52-58. Korchagin, O.A. 2003. Mesozoic planktonic foraminifer classification (superfamilies Planomalinacea, Rotaliporacea and Globotrun- Georgescu, M.D. and Huber, B.T. 2009. Early evolution of the Creta- canacea). Trudy VNIGRI, 547, 1-89. [In Russian] ceous serial planktic foraminifera (late Albian-Cenomanian). Journal of Foraminiferal Research, 39, 335-360. Krasheninnikov, V.A. and Basov, J.A. 1983. Stratigraphy of Cretaceous sediments of the Falkland Plateau based on planktonic foraminifers, Gradstein, F.M., Ogg, J.G. and Smith, A.G., Eds. 2004. A Geologic Time Deep Sea Drilling Project, Leg 71. Initial Reports of the Deep Sea Scale 2004. Cambridge University Press, Cambridge, 589 pp. Drilling Project, 71, 789-820.

Hanzlíková, E. 1972. Carpathian Upper Cretaceous Foraminiferida of Küpper, K. 1955. Upper Cretaceous foraminifera from the “Franciscan Moravia (Turonian-Maastrichtian). Rozpravy Úst edn ho Ústavu series”, new Almaden District, California. Contributions from the Geologického, 39, 1-160. Cushman Foundation for Foraminiferal Research, 6, 112-118.

Hagn, H. and Zeil, W. 1954. Globotruncanen aus dem Ober-Cenoman Küpper, K. 1956. Upper Cretaceous pelagic foraminifera from the “An- und Unter-Turon der Bayerischen Alpen. Eclogae Geologicae Helve- telope Shale”, Glenn and Colusa Counties, California. Contributions tiae, 47, 1-60. from the Cushman Foundation for Foraminiferal Research, 7, 40-47.

Hart, M.B. 1999. The evolution and biodiversity of Cretaceous planktic Küpper, I. 1963. Mikropaläontologische Gliderung der Oberkreide des Foraminiferida. Geobios, 32, 247-255. Beckenuntergrundes in der oberösterreichischen Molassebohrungen. Mitteilungen der Geologischen Gesselschaft in Wien, 56, 591-651. Hart, M.B., Oxford, M.J. and Hudson, W. 2002. The early evolution and paleobiogeography of Mesozoic planktic foraminifera. In: Palaeobio- Lamolda, M.A. 1976. Analisis del crecimiento de Whiteinella archaeoc- geography and biodiversity change: the Ordovician and Mesozoic- retacea Pessagno, 1967 y de Whiteinella kingi (Trujillo, 1960). Re- Cenozoic radiations (Eds. Cramer, J.A. and Owen, A.W.): London, vista Española de Micropaleontología, 8, 15-22. The Geological Society of London, Special Publications, 194, 115- Lamolda, M.A. 1977. Three new species of planktonic foraminifera from 125. the Turonian of northern Spain. Micropaleontology, 23, 470-477. Hofker, J. 1956. Die Globotruncanen von Nordwest-Deutschland und Lamolda, M.A. 1977. Los Marginotruncaninae del Turoniense Vasco- Holland. Neues Jahrbuch für Geologie und Paläontologie, 103, 312- Cantabrico. Revista Española de Micropaleontología, 9, 381-410. 340. Lamolda, M.A., Gorostidi, A., Martínez, R., López and Peryt, D. 1997. Huber, B.T. 1994. Ontogenetic Morphometrics of Some Late Cretaceous Fossil occurrences in the Upper Cenomanian-Lower Turonian at Trochospiral Planktonic Foraminifera from the Austral Realm. Smith- Ganuza, northern Spain: an approach to Cenomanian/Turonian sonian Contributions to Paleobiology, 77, 1-85. boundary chronostratigraphy. Cretaceous Research, 18, 331-353.

Huber, B.T., Leckie, R.M., Norris, R.D., Bralower, T.J. and CoBabe, E. Leckie, R.M. 1984. Mid-Cretaceous planktic foraminiferal biostratigraphy 1999. Foraminiferal assemblage and stable isotopic change across off central Morocco, Deep Sea Drilling Project Leg 79, Sites 545 and the Cenomanian-Turonian boundary in the subtropical North At- 547. Initial Reports of the Deep Sea Drilling Project, 79, 579-620. lantic. Journal of Foraminiferal Research, 29, 392-417. Leckie, R.M. 1985. Foraminifera of the Cenomanian-Turonian boundary Jansen, H. and Kroon, D. 1987. Maestrichtian foraminifers from Site 605, interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo, Col- Deep Sea Drilling Project Leg 93, Northwest Atlantic. Initial Reports orado. In: Deposits and Biofacies of the Cretaceous Western Interior of the Deep Sea Drilling Project, 93(2), 555-575. Seaway: Evidence of cyclic sedimentary processes (Eds. Pratt, L.A. et al.). Tulsa: Society of Economic Paleontologists and Mineralogists. Keller, G., Han, Q., Adatte, T. and Burns, S.J. 2001. Paleoenvironment of Field Trip Guide Book 4, 139-149. the Cenomanian-Turonian transition at Eastbourne, England. Creta- ceous Research, 22, 391-422. Lipson-Benitah, S., Almogi-Labin, A. and Sass, E. 1997. Cenomanian biostratigraphy and paleoenvironments in the northwest Carmel re- Keller, G. and Pardo, A. 2004. Age and paleoenvironment of the Ceno- gion, northern Israel. Cretaceous Research, 18, 469-491. manian-Turonian global stratotype section and point at Pueblo, Col- orado. Marine Micropaleontology, 51, 95-128. Loeblich, A.R. Jr. and Tappan, H. 1946. New Washita foraminifera. Jour- nal of Paleontology, 20, 238-258. Kent, H.C., 1967. Microfossils from the Niobrara Formation (Cretaceous) and equivalent strata in northern and western Colorado. Journal of Loeblich, A.R. Jr. and Tappan, H. 1961. Cretaceous Planktic foraminifera: Paleontology, 41, 1433-1456. Part I – Cenomanian. Micropaleontology, 7, 257-304.

Klaus, J. 1959. La “complexe schisteux intermédiaire” dans le synclinal Loeblich, A.R. Jr. and Tappan, H. 1964. Sarcodina Chiefly “Thecamoe- de la Guryère (Préalpes Médianes). Stratigraphie et micropaléontolo- bians” and Foraminifera. In: Treatise on Invertebrate Paleontology (Ed.

205 Revista Española de Micropaleontología / v. 43 / nº 3 / 2011

R.C. Moore), Boulder: The University of Kansas Press and Geological Nederbragt, A.J. 1991. Late Cretaceous biostratigraphy and development Society of America. of Heterohelicidae (planktic foraminifera). Micropaleontology, 37, 329-372. Loeblich, A.R. Jr. and Tappan, H. 1987. Foraminiferal Genera and Their Classification. Van Nostrand Reinhold Company, New York, 970 pp. North, B.R. and Caldwell, W.G.E. 1975. Illustrations of Canadian fossils. Cretaceous foraminifera from Saskatchewan and Manitoba. Geolog- Loetterle, G. 1937. The Micropaleontology of the Niobrara Formation in ical Survey of Canada Paper, 74-38, 1-35. Kansas, Nebraska, and South Dakota. Nebraska Geological Survey Bulletin, 12, 1-73. Olsson, R.K. and Usmani, P.A. 1992. Upper Cretaceous foraminifera in Santonian to Maestrichtian depositional sequences in the New Jersey Longoria, J.F. 1973. Pseudoticinella, a new genus of Cretaceous Coastal Plain. In: Centenary of Japanese Micropaleontology (Eds. K. Foraminifera from Texas. Revista Española de Micropaleontología, 5, Ishizaki and T. Saito), Terra Scientific Publishing Company, Tokyo, 417-423. 301–315.

Longoria, J.F. 1974. Stratigraphic, morphologic and taxonomic studies Peryt, D. 1980. Planktic foraminifera zonation of the Upper Cretaceous of Aptian planktic foraminifera. Revista Española de Micropaleon- in the middle Vistula River valley, Poland. Palaeontologia Polonica, tologia, Numero extraordinario, 11-107. 41, 5-101.

Longoria, J.F. and Gamper, M.A., 1975. The classification and evolution Pessagno, E.A. Jr. 1967. Upper Cretaceous planktic foraminifera from the of Cretaceous planktonic foraminifera. Part I: The Superfamily Hed- western Gulf Coastal Plain. Palaeontographica Americana, 5(37), bergelloidea. Revista Española de Micropaleontología, 7, 61-96. 245-445.

Marianos, A.W. and Zingula, R.P. 1966. Cretaceous planktonic Petrizzo, M.R. 2000. Upper Turonian-lower Campanian planktonic foraminifers from Dry Creek, Tehama County, California. Journal of foraminifera from southern mid-high latitudes (Exmouth Plateau, NW Paleontology, 40, 328-342. Australia): biostratigraphy and taxonomic notes. Cretaceous Re- search, 21, 479-505. Masters, B.A. 1977. Mesozoic Planktic Foraminifera: a world-wide re- view and analysis. In: Oceanic Micropaleontology (Ed. A.T.S. Ram- Petrizzo, M.R. 2001. Late Cretaceous planktonic foraminifera from Ker- say), Academic Press, London-New York-San Francisco, 1: 301-733. guelen Plateau (ODP Leg 183): new data to improve the Southern Ocean biozonation. Cretaceous Research, 22, 829-855. McNeil, D.H. and Caldwell, W.G.E. 1981. Cretaceous rocks and their foraminifera in the Manitoba Escarpment. The Geological Associa- Petrizzo, M.R. and Huber, B.T. 2006. Biostratigraphy and taxonomy of tion of Canada Special Paper, 21, 1-439. Late Albian planktic foraminifera from ODP Leg 171B (western North Atlantic Ocean). Journal of Foraminiferal Research, 36, 166-190. McNulty, C. L. 1979. Smaller cretaceous foraminifers of Leg 43, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, Petrizzo, M.R. and Premoli Silva, I. 2000. Upper Cretaceous meridion- 43, 487–505. ally costellate hedbergellids: the genus Meridionalla El-Nakhal, 1982 vs. the genus Costellagerina Petters, El-Nakhal and Cifelli, 1983. Jour- Mesozoic Planktic Foraminifera Working Group, 2006. Mesozoic Plank- nal of Foraminiferal Research, 30, 306-309. tic Foraminiferal Taxonomic Dictionary (Ed. B.T. Huber), www.chronos.org Petters, S.W. 1977. Upper Cretaceouos planktonic foraminifera from the subsurface of the Atlantic Coastal Plain of New Jersey. Journal of Michael, F.Y. 1973. Planktonic foraminifera from the Comanchean Series Foraminiferal Research, 7, 165-187. (Cretaceous) of Texas. Journal of Foraminiferal Research, 2, 200-220. Pflaumann, U. and Krasheninnikov, V.A. 1977. Early Cretaceous Plank- Miles, G.A. and Orr, W.N., 1980. Planktic foraminifers from the Bermuda tic foraminifers from Eastern North Atlantic, DSDP Leg 41. Initial Re- Rise, Deep Sea Drilling Project Legs 51, 52, and 53. Initial Reports of ports of the Deep Sea Drilling Project, 41, 539-564. the Deep Sea Drilling Project, 51-53(2), 791–813. Plummer, H.J. 1931. Some Cretaceous foraminifera in Texas. University Moorkens, T.L. 1969. Quelques Globotruncaniidae et Rotaliporiidae Cé- of Texas Bureau of Economic Geology and Technology Bulletin, nomanien, Turonien et Coniacien de la Belgique. In: Proceedings of 3101, 109-203. the First International Conference on Planktonic Microfossils (Eds. Brönnimann P. and Renz, H.H.), E.J. Brill, Leiden, 2, 435-459. Porthault, B. 1969. Foraminifères planctoniques et biostratigraphie du Cénomanien dans le sud-est de la France. In: Proceedings of the First Mornod, L., 1950. Les Globorotalidés du Crétacé supérieur du Montsal- International Conference on Planktonic Microfossils (Eds. Brönni- vens (Préalpes frigourgeoises). Eclogae Geologicae Helvetiae, 42, mann P. and Renz, H.H.), E.J. Brill, Leiden, 2, 526-546. 573-596. Postuma, J.A. 1971. Manual of Planktonic Foraminifera. Elsevier Pub- Nauss, A.W., 1947. Cretaceous microfossils of the Vermillon area, Al- lishing Company, Amsterdam-London-New York, 420 pp. berta. Journal of Paleontology, 21, 329-434. Premoli Silva, I. and Sliter, W.V. 1981. Cretaceous planktonic Neagu, T. 1969. Cenomanian planktic foraminifera in the southern part foraminifers from the Nauru Basin, Leg 61, Site 462, western equa- of the Eastern Carpathians. Rocznik Polskiego Towarzystwa Geolog- torial Pacific. Initial Reports of the Deep Sea Drilling Project, 61, 423- icznego, 39, 133-181. 437.

Neagu, T. 2005. Albian foraminifera of the Romanian Plain. Planktic Premoli Silva, I. and Sliter, W.V. 1986. Late Aptian and Cenomanian-Tur- foraminifera. Acta Palaeontologica Romaniae, 5, 311-332. onian planktonic foraminifers from Deep Sea Drilling Project Site

206 Marius Dan Georgescu, Iterative evolution, taxonomic revision and evolutionary classification of the praeglobotruncanid planktic foraminifera, Cretaceous (late Albian-Santonian)

585, Leg 89, East Mariana Basin. Initial Reports of the Deep Sea Sigal, J. 1952a. Ordre des Foraminifères. In: Traité de Paléontologie (Ed. Drilling Project, 89, 297-309. Pivteau, J.E.), Mason et Cie, Paris, 1, 133-301.

Prosnyakova, L. V. 1967. Planktonic foraminifera (praeglobotruncanids Sigal, J. 1952b. Aperçu stratigraphique sur la micropaléontologie du Cré- and rotalioprids) from the Cenomanian of the Crimea Plain. Paleon- tacé. Alger, 19th International Geological Congress, Monographies tologiceskyi Sbornik, 4, 3-9. [In Russian] regionales, 1re ser., Algérie, 26, 1-52.

Randriansolo, A. and Anglada, R. 1989. La lignée Hedbergella wondersi Sigal, J. 1958. La classification actuelle des familles des foraminifers nov. sp. – Planomalina buxtorfi (Gandolfi) (Foraminifères planc- planctoniques du Crétacé. Compte Rendu des Séances, Société toniques) dans l’Albo-Cénomanien du Bassin D’Antisiranana (Nord Géologique de France, 1958, 262-265. de Madagascar). Geobios, 22, 803-823. Sliter, W.V. 1977. Cretaceous foraminifera from the Southwest Atlantic Reichel, M. 1950. Observations sur les Globotruncana du gisement de Ocean, Leg 36, Deep Sea Drilling Project. Initial Reports of the Deep la Breggia (Tessin). Eclogae Geologicae Helvetiae, 42, 596-617. Sea Drilling Project, 36, 519-573.

Reiss, Z. 1957. The Bilamellidea, nov. superfam., an remarks on Creta- Subbotina, N.N. 1953. Fossil foraminifera of the USSR. Globigerinids, ceous globorotaliids. Contributions from the Cushman Foundation Hantkeninids and Globorotaliids. Trudy VNIGRI, 76, 1-296. [In Russ- for Foraminiferal Research, 8, 127-145. ian]

Robaszynski, F., and Caron, M. (coordinators) and The European Work- Takayanagi, Y. 1960. Cretaceous foraminifera from Hokkaido, Japan. Sci- ing Group on Planktic Foraminifera (EWGPF) 1979. Atlas de ence Reports of the Tohoku University, Sendai, Japan, 32, 1-154. Foraminifères Planctoniques du Crétacé moyen (mer Boréale et Téthys). Cahiers de Micropaléontologie, 1, 1-185; 2, 1-181. Takayanagi, Y. 1965. Upper Cretaceous planktonic foraminifera from the Putah Creek subsurface section along the Yolo-Solano County line, Robaszynski, F., and Caron, M. 1995. Foraminifères planctoniques du California. Science Reports of the Tohoku University, Sendai, Japan, Crétacé: commentaire de la zonation Europe-Mèditerranée. Bulletin 36, 161-237. de la Société Géologique de France, 6, 681-692. Tappan, H. 1940. Foraminifera from the Grayson Formation of northern Robaszynski, F., Caron, M., González Donoso, J.M., Wonders, A.H. and Texas. Journal of Paleontology, 14, 93-126. The European Working Group on Planktonic Foraminifera 1984. Atlas of Late Cretaceous globotruncanids. Revue de Micropaléontologie, Tappan, H. 1951. North Alaska index foraminifera. Contributions from 26, 145–305. the Cushman Foundation for Foraminiferal Research, 2, 1-9.

Robaszynski, F., Caron, M., Dupuis, C., Amédro, F., González Donoso, Tappan, H. 1962. Foraminifera from the Arctic Slope of Alaska, Part 3, J.-M., Linares, D., Hardenbol, J., Gartner, S., Calandra, F. and Delof- Cretaceous foraminifera. United States Geological Survey Profes- fre, R. 1990. A tentative integrated stratigraphy in the Turonian of cen- sional Paper, 236-C, 91-209. tral Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin du centre de Recherche, Exploration et Thalmann, H.E. 1959. New names for foraminiferal homonyms IV. Con- Production, Elf-Aquitaine, 14, 213-384. tributions from the Cushman Foundation for Foraminiferal Research, 10, 130-131. Saavedra, J.L. 1965. La evolución de los Globigerináceos. Boletín de la Real Sociedad Española de Historia Natural, 63, 317-349. Trujillo, E.F. 1960. Upper Cretaceous foraminifera from near Redding, Shasta County, California. Journal of Paleontology, 34, 290–346. Salaj, J. 1980. Microbiostratigraphie du Crétacé et du Paleogene de la Tunisie septentrionale et orientale (Hypostratotypes tunisienes). Ge- Tur, N.A., Smirnov, J.P. and Huber, B.T. 2001. Late Albian-Coniacian ologický Ústav Dionýza Štúra, Bratislava, 232 p. planktic foraminifera and biostratigraphy of the northeastern Cauca- sus. Cretaceous Research, 22, 719-734. Salaj, J. and Samuel, O. 1966. Foraminifera der Westkarpaten – Kreide. Geologický Ústav Dionýza Štúra, Bratislava, 291 p. Wall, J.H. 1967. Cretaceous foraminifera of the Rocky Mountains Foothills, Alberta. Research Council of Alberta Bulletin, 20, 1-185. Samuel, O. 1962. Mikrobiostratigrafické pomery kreidových sedimen- tov vnútorného bradlonvého pásma v okolí Be atíny. Geologické Webb, P.N. 1973. Upper Cretaceous-Paleocene foraminifera from Site Práce, 24, 153-167. 208 (Lord Howe Rise, Tasman Sea), DSDP Leg 21. Initial Reports of the Deep Sea Drilling Project, 21: 541-573. Samuel, M.D., Ismail, A.A., Akarish, A.I.M. and Zaky, A.H. 2009. Upper Cretaceous stratigraphy of the Gebel Somar area, north-central Sinai, Weidich, K.F. 1984. Feinstratigraphie, Taxonomie planktonischer Egypt. Cretaceous Research, 30, 22-34. Foraminiferen und Palökologie der Foraminiferenfauna der kalka- lpinen tieferen Oberkreide (Untercenoman-Untercampan) der Bay- Scheibnerová, V. 1960. Poznámky k rodu Praeglobotruncana Bermúdez erischen Alpen. Bayerische Akademie der Wissenschaften, z kysuckých vrstiev bradlového pásma. Geologicky Sbornik, 11, 85- Matematisch-Naturwissenschaftliche Klasse, Abhandlungen, 162, 1- 90. 151. Scheibnerová, V. 1968. Middle and Upper Cretaceous microbiostratig- raphy of the Klippen Belt (West Carpathians). Acta Geologica et Ge- MANUSCRITO RECIBIDO: 30 de noviembre, 2010 oghraphica Universitatis Comenianae, ser. Geologica, 17, 5-98. MANUSCRITO ACEPTADO: 14 de septiembre, 2011

207