Ivtigation of the Effects of Mechanical Strain in Human Tenocytes

Total Page:16

File Type:pdf, Size:1020Kb

Ivtigation of the Effects of Mechanical Strain in Human Tenocytes Investigation of the effects of Mechanical Strain in Human Tenocytes Eleanor Rachel Jones In partial fulfilment of the requirements for the Degree of Doctor of Philosophy University of East Anglia, Biological Sciences September 2012 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must be included full attribution. Abstract Tendinopathies are a range of diseases characterised by pain and insidious degeneration. Although poorly understood, onset is often associated with physical activity. Metalloproteinases are regulated differentially in tendinopathy causing disruptions in extracellular matrix (ECM) homeostasis. An increase in the anti-inflammatory cytokine TGFβ has also been documented. This project aims to investigate the effect of cyclic tensile strain loading and TGFβ stimulation on protease and ECM protein expression by human tenocytes and begin to characterise the pathway of mechanotransduction. Human tenocytes were seeded at 1.5x106 cells/ml into collagen gels (rat tail type I, 1mg/ml) and stretched using a sinusoidal waveform of 0-5% at 1Hz using the Flexcell FX4000T™ system. Cultures were treated with or without 1ng/ml TGFβ1 or inhibitors of TGFβRI, metalloproteinases, RGD, Mannose-6-phosphate, integrin β1 and a thrombospondin as appropriate. qRT-PCR and a cell based luciferase assay were used to assess RNA and TGFβ activity respectively. The prolonged application of 5% cyclic mechanical strain in a 3D culture system induced an anabolic response in protease and matrix genes. In most genes changes in gene expression with loading was mirrored with TGFβ stimulation. We also demonstrated that the inhibition of the TGFβRI abrogated the strain induced changes in mRNA. TGFβ activity was increased with 48 hours mechanical strain although there was no increase in mRNA or total TGFβ. This indicates that TGFβ activation plays an important role in the mechanoregulation of gene expression. Inhibition of potential mechanisms of TGFβ activation including; serine protease or metalloproteinase activity, integrin or thrombospondin interaction with latent TGFβ showed no effect upon TGFβ activation or gene regulation with strain. Therefore strain mediated TGFβ activation may occur via a novel mechanism. By understanding mechanotransduction, we may be able to determine whether dysregulation of this system is involved in the development of tendinopathy. Table of Contents Abstract .................................................................................................................................. 2 List of Tables.......................................................................................................................... 7 Table of Figures ..................................................................................................................... 9 Acknowledgements .............................................................................................................. 12 CHAPTER 1: Introduction ...................................................................................................... 13 1.1. Tendon Structure ....................................................................................................... 14 1.1.1. Collagens of tendon............................................................................................ 16 1.1.2. Proteoglycans of tendon ..................................................................................... 20 1.1.3. Glycoproteins of tendon ..................................................................................... 24 1.2. Tendon cell population .............................................................................................. 28 1.2.1. Tendon cell markers ........................................................................................... 28 1.3. Vascularisation .......................................................................................................... 30 1.4. Tendon Function ....................................................................................................... 31 1.5. Tendinopathy............................................................................................................. 34 1.5.1. Collagen Expression with Tendinopathy ........................................................... 35 1.5.2. GAG and Tendinopathy ..................................................................................... 35 1.5.3. Proteoglycan and Glycoprotein regulation with Tendinopathy ......................... 35 1.5.4. Inflammatory cytokine regulation with Tendinopathy ...................................... 36 1.5.5. Tendon ‘marker’ regulation with Tendinopathy ................................................ 37 1.5.6. Age and tendinopathy ........................................................................................ 37 1.6. Extracellular Matrix Degradation In Tendinopathy .................................................. 39 1.6.1. Matrix Metalloproteinases (MMP) .................................................................... 40 1.6.2. Tissue Inhibitors of Metalloproteinases ............................................................. 44 1.6.3. Disintegrin and Metalloproteinase domain (ADAM) ........................................ 45 1.6.4. A Disintegrin and Metalloproteinase domain with Thrombospondin motifs (ADAMTS) .................................................................................................................. 47 1.7. Mechanical Strain...................................................................................................... 50 1.7.1. MMP1mRNA regulation with mechanical load ................................................ 51 1.7.2. MMP2 mRNA regulation with mechanical load ............................................... 55 1.7.3MMP3 mRNA regulation with mechanical load ................................................. 57 1.7.4. MMP9 mRNA regulation with mechanical load ............................................... 59 1.7.5. MMP13 mRNA expression with mechanical load............................................. 61 Table 1.10. MMP13 Regulation with mechanical strain ............................................. 62 1.7.6. Rat Collagenase .................................................................................................. 63 1.7.7. Other MMPs regulated with mechanical load .................................................... 65 1.7.8. ADAMTS and TIMP regulation with mechanical load ..................................... 65 1.7.9. Matrix protein regulation with mechanical strain .............................................. 66 1.7.10. Cytokine regulation in response to Mechanical load ....................................... 66 1.7.11. Mechanical regulation of ‘markers’ of tendon ................................................. 67 1.7.12. Mechanical load and tendinopathy................................................................... 68 1.8. Mechanosensation and transduction ......................................................................... 70 1.8.1. Cytoskeletal detection of mechanical strain ....................................................... 72 1.8.2. Stress deprivation ............................................................................................... 75 1.8.3. Growth factors .................................................................................................... 76 1.8.4. Gap Junction communication ............................................................................. 77 1.8.5. Calcium signalling ............................................................................................. 78 1.9. Transforming Growth Factor beta ............................................................................. 83 1.9.1. TGFβ Synthesis and secretion ............................................................................ 84 1.9.2. Activation of latent TGFβ .................................................................................. 86 1.9.3. Disruption of TGFβ regulation .......................................................................... 97 1.9.4. TGFβ Signalling ................................................................................................. 98 1.9.5. TGFβ and mechanical load .............................................................................. 100 1.9.6. TGFβ and tendinopathy ................................................................................... 101 CHAPTER 2; Materials and Methods ................................................................................... 102 2.1. Materials .................................................................................................................. 102 2.2 Cell culture Methods ................................................................................................ 106 2.2.1 Cell culture ........................................................................................................ 106 2.2.2 Tissue Train cell culture protocol ..................................................................... 106 2.2.3 Cell viability testing – Calcein AM and Ethidium Homodimer staining .......... 109 2.2.4 Cell viability testing – tenocyte extraction by collagenase digestion ............... 109 2.2.5 siRNA knockdown ...........................................................................................
Recommended publications
  • Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
    DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis.
    [Show full text]
  • Role of Proteases in Dysfunctional Placental Vascular Remodelling in Preeclampsia
    Accepted Manuscript Role of proteases in dysfunctional placental vascular remodelling in preeclampsia Jaime A. Gutiérrez, Isabel Gómez, Delia I. Chiarello, Rocío Salsoso, Andrés D. Klein, Enrique Guzmán-Gutiérrez, Fernando Toledo, Luis Sobrevia PII: S0925-4439(19)30115-2 DOI: https://doi.org/10.1016/j.bbadis.2019.04.004 Reference: BBADIS 65448 To appear in: BBA - Molecular Basis of Disease Received date: 23 February 2018 Revised date: 20 December 2018 Accepted date: 6 January 2019 Please cite this article as: J.A. Gutiérrez, I. Gómez, D.I. Chiarello, et al., Role of proteases in dysfunctional placental vascular remodelling in preeclampsia, BBA - Molecular Basis of Disease, https://doi.org/10.1016/j.bbadis.2019.04.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Role of proteases in dysfunctional placental vascular remodelling in preeclampsia Jaime A. Gutiérrez1,7 *, Isabel Gómez1, Delia I Chiarello7, Rocío Salsoso5,7†, Andrés D Klein2, Enrique Guzmán-Gutiérrez3, Fernando Toledo4,7, Luis Sobrevia5,6,7 * 1 Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile. 2 Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile.
    [Show full text]
  • Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
    Global analysis reveals the complexity of the human glomerular extracellular matrix Rachel Lennon,1,2 Adam Byron,1,* Jonathan D. Humphries,1 Michael J. Randles,1,2 Alex Carisey,1 Stephanie Murphy,1,2 David Knight,3 Paul E. Brenchley,2 Roy Zent,4,5 and Martin J. Humphries.1 1Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; 2Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; 3Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK; 4Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; and 5Veterans Affairs Hospital, Nashville, TN, USA. *Present address: Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. Running title: Proteome of the glomerular matrix Word count: Abstract: 208, main text 2765 Corresponding author: Dr Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Phone: 0044 (0) 161 2755498. Fax: 0044 (0) 161 2755082. Email: [email protected] Abstract The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. Here, we employed mass spectrometry–based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalogue includes all previously identified glomerular components, plus many new and abundant components.
    [Show full text]
  • Bruch's Membrane Abnormalities in PRDM5-Related Brittle Cornea
    Porter et al. Orphanet Journal of Rare Diseases (2015) 10:145 DOI 10.1186/s13023-015-0360-4 RESEARCH Open Access Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome Louise F. Porter1,2,3, Roberto Gallego-Pinazo4, Catherine L. Keeling5, Martyna Kamieniorz5, Nicoletta Zoppi6, Marina Colombi6, Cecilia Giunta7, Richard Bonshek2,8, Forbes D. Manson1 and Graeme C. Black1,9* Abstract Background: Brittle cornea syndrome (BCS) is a rare, generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Recessive mutations in transcription factors ZNF469 and PRDM5 cause BCS. Both transcription factors are suggested to act on a common pathway regulating extracellular matrix genes, particularly fibrillar collagens. We identified bilateral myopic choroidal neovascularization as the presenting feature of BCS in a 26-year-old-woman carrying a novel PRDM5 mutation (p.Glu134*). We performed immunohistochemistry of anterior and posterior segment ocular tissues, as expression of PRDM5 in the eye has not been described, or the effects of PRDM5-associated disease on the retina, particularly the extracellular matrix composition of Bruch’smembrane. Methods: Immunohistochemistry using antibodies against PRDM5, collagens type I, III, and IV was performed on the eyes of two unaffected controls and two patients (both with Δ9-14 PRDM5). Expression of collagens, integrins, tenascin and fibronectin in skin fibroblasts of a BCS patient with a novel p.Glu134* PRDM5 mutation was assessed using immunofluorescence. Results: PRDM5 is expressed in the corneal epithelium and retina. We observe reduced expression of major components of Bruch’s membrane in the eyes of two BCS patients with a PRDM5 Δ9-14 mutation.
    [Show full text]
  • 2335 Roles of Molecules Involved in Epithelial/Mesenchymal Transition
    [Frontiers in Bioscience 13, 2335-2355, January 1, 2008] Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis Giulio Ghersi Dipartimento di Biologia Cellulare e dello Sviluppo, Universita di Palermo, Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Extracellular matrix 3.1. ECM and integrins 3.2. Basal lamina components 4. Cadherins. 4.1. Cadherins in angiogenesis 5. Integrins. 5.1. Integrins in angiogenesis 6. Focal adhesion molecules 7. Proteolytic enzymes 7.1. Proteolytic enzymes inhibitors 7.2. Proteolytic enzymes in angiogenesis 8. Perspective 9. Acknowledgements 10. References 1.ABSTRACT 2. INTRODUCTION Formation of vessels requires “epithelial- Growth of new blood vessels (angiogenesis) mesenchymal” transition of endothelial cells, with several plays a key role in several physiological processes, such modifications at the level of endothelial cell plasma as vascular remodeling during embryogenesis and membranes. These processes are associated with wound healing tissue repair in the adult; as well as redistribution of cell-cell and cell-substrate adhesion pathological processes, including rheumatoid arthritis, molecules, cross talk between external ECM and internal diabetic retinopathy, psoriasis, hemangiomas, and cytoskeleton through focal adhesion molecules and the cancer (1). Vessel formation entails the “epithelial- expression of several proteolytic enzymes, including matrix mesenchymal” transition of endothelial cells (ECs) “in metalloproteases and serine proteases. These enzymes with vivo”; a similar phenotypic exchange can be induced “in their degradative action on ECM components, generate vitro” by growing ECs to low cell density, or in “wound molecules acting as activators and/or inhibitors of healing” experiments or perturbing cell adhesion and angiogenesis. The purpose of this review is to provide an associated molecule functions.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426
    Aydogan Türkoğlu & Gültekin Tosun (2020) Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426 Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions Sümeyye AYDOGAN TÜRKOĞLU1,*, Sinem GÜLTEKİN TOSUN2 1Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey [email protected], ORCID: 0000-0003-1754-0700 2Erciyes University, Institute of Health Sciences, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey [email protected], ORCID: 0000-0002-3927-0089 Received: 03.05.2020 Accepted: 25.09.2020 Published: 30.12.2020 Abstract ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2), an N- propeptidase isoenzyme, is an enzyme involved in collagen biosynthesis by providing the amino ends of procollagen to be cut away. ADAMTS2 has anti-angiogenic activity as well as provides the processing of collagen. With this activity, it has become a target in cancer studies. Hypoxic regulation is a process that affects the expression of a large number of genes at the cellular level. Within the scope of our study, the cloning of the ADAMTS2 gene and its expression in Saos-2 (human bone carcinoma) cell line were performed ectopically. For this purpose, the transient transfection of the expression vector containing ADAMTS2 coding sequence was transfected by the calcium-phosphate precipitation method. Recombinant ADAMTS2 mRNA expression was checked by Real-Time PCR in Saos-2 cells. It was observed that there was a 50-fold increase in ADAMTS2 mRNA expression in the transfected Saos-2 cells compared to the control group.
    [Show full text]
  • Anti-MMP26 (GW21139)
    3050 Spruce Street, Saint Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: [email protected] Product Information Anti-MMP26 antibody produced in chicken, affinity isolated antibody Catalog Number GW21139 Formerly listed as GenWay Catalog Number 15-288-21139, Matrix metalloproteinase-26 Antibody. – Storage Temperature Store at 20 °C The product is a clear, colorless solution in phosphate buffered saline, pH 7.2, containing 0.02% sodium azide. Synonyms: Matrix metalloproteinase 26 preproprotein, EC 3.4.24.-; MMP-26; Matrilysin-2; Endometase Species Reactivity: Human Product Description Tested Applications: WB May hydrolyze collagen type IV. fibronectin. fibrinogen. Recommended Dilutions: Recommended starting dilution beta-casein. type I gelatin and alpha-1 proteinase inhibitor. for Western blot analysis is 1:500, for tissue or cell staining Is also able to activates progelatinase B. Proteins of the 1:200. matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological Note: Optimal concentrations and conditions for each processes. such as embryonic development. reproduction. application should be determined by the user. and tissue remodeling. as well as in disease processes. such Precautions and Disclaimer as arthritis and metastasis. Most MMP's are secreted as This product is for R&D use only, not for drug, household, or inactive proproteins which are activated when cleaved by other uses. Due to the sodium azide content a material extracellular proteinases. The enzyme encoded by this gene safety data sheet (MSDS) for this product has been sent to degrades type IV collagen, fibronectin, fibrinogen, and the attention of the safety officer of your institution.
    [Show full text]
  • ADAMTS Proteases in Vascular Biology
    Review MATBIO-1141; No. of pages: 8; 4C: 3, 6 ADAMTS proteases in vascular biology Juan Carlos Rodríguez-Manzaneque 1, Rubén Fernández-Rodríguez 1, Francisco Javier Rodríguez-Baena 1 and M. Luisa Iruela-Arispe 2 1 - GENYO, Centre for Genomics and Oncological Research, Pfizer, Universidad de Granada, Junta de Andalucía, 18016 Granada, Spain 2 - Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA Correspondence to Juan Carlos Rodríguez-Manzaneque and M. Luisa Iruela-Arispe: J.C Rodríguez-Manzaneque is to be contacted at: GENYO, 15 PTS Granada - Avda. de la Ilustración 114, Granada 18016, Spain; M.L. Iruela-Arispe, Department of Molecular, Cell and Developmental Biology, UCLA, 615 Charles Young Drive East, Los Angeles, CA 90095, USA. [email protected]; [email protected] http://dx.doi.org/10.1016/j.matbio.2015.02.004 Edited by W.C. Parks and S. Apte Abstract ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases comprise the most recently discovered branch of the extracellular metalloenzymes. Research during the last 15 years, uncovered their association with a variety of physiological and pathological processes including blood coagulation, tissue repair, fertility, arthritis and cancer. Importantly, a frequent feature of ADAMTS enzymes relates to their effects on vascular-related phenomena, including angiogenesis. Their specific roles in vascular biology have been clarified by information on their expression profiles and substrate specificity. Through their catalytic activity, ADAMTS proteases modify rather than degrade extracellular proteins. They predominantly target proteoglycans and glycoproteins abundant in the basement membrane, therefore their broad contributions to the vasculature should not come as a surprise.
    [Show full text]
  • Integrin Adhesion Molecules in the Human Endometrium. Correlation with the Normal and Abnormal Menstrual Cycle
    Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. B A Lessey, … , S M Albelda, C A Buck J Clin Invest. 1992;90(1):188-195. https://doi.org/10.1172/JCI115835. Research Article Integrins are a class of cell adhesion molecules that participate in cell-cell and cell-substratum interactions and are present on essentially all human cells. The distribution of nine different alpha and beta integrin subunits in human endometrial tissue at different stages of the menstrual cycle was determined using immunoperoxidase staining. Glandular epithelial cells expressed primarily alpha 2, alpha 3, and alpha 6 (collagen/laminin receptors), while stromal cells expressed predominantly alpha 5 (fibronectin receptor). The presence of alpha 1 on glandular epithelial cells was cycle specific, found only during the secretory phase. Expression of both subunits of the vitronectin receptor, alpha v beta 3, also underwent cycle specific changes on endometrial epithelial cells. Immunostaining for alpha v increased throughout the menstrual cycle, while the beta 3 subunit appeared abruptly on cycle day 20 on luminal as well as glandular epithelial cells. Discordant luteal phase biopsies (greater than or equal to 3 d "out of phase") from infertility patients exhibited delayed epithelial beta 3 immunostaining. These results demonstrate similarities, as well as specific differences, between endometrium and other epithelial tissues. Certain integrin moieties appear to be regulated within the cycling endometrium and disruption of integrin expression may be associated with decreased uterine receptivity and infertility. Find the latest version: https://jci.me/115835/pdf Integrin Adhesion Molecules in the Human Endometrium Correlation with the Normal and Abnormal Menstrual Cycle Bruce A.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin
    The Journal of Neuroscience, March 22, 2017 • 37(12):3181–3191 • 3181 Cellular/Molecular Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin Himari Ogino,1* Arisa Hisanaga,1* XTakao Kohno,1 Yuta Kondo,1 Kyoko Okumura,1 Takana Kamei,1 Tempei Sato,2 Hiroshi Asahara,2 Hitomi Tsuiji,1 Masaki Fukata,3 and Mitsuharu Hattori1 1Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan, 2Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and 3Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer’s disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo. Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus.
    [Show full text]