Collective Intelligence in Web 2.0

Total Page:16

File Type:pdf, Size:1020Kb

Collective Intelligence in Web 2.0 Collective Intelligence in Web 2.0 José Luis de Vicente | [email protected] | Why 2005 may be as important for the be much more profitable after going public Web as 1995 was than the doomsayers predicted). A famil- iar dynamic: three giants of the informa- This year marks an important anniversary for tion economy competing to be the first to the Web. It’s not the anniversary of its crea- get their hands on the small company (like tion or its mass popularization. In 1995, Net- Flickr and Konfabulator for Yahoo, Keyhole or scape became the first Internet company to Dodgeball for Google) that has developed go public, thus opening the door to a new an innovative service that could turn out to economic era and the start of a new way of be the next killer app. An eye-catching, revo- conceiving the Web: not just a as a space re- lutionary technology being held up as the so- served for the few who passed its complex lution to all the Web’s problems (then it was initiation rites, but as a medium for the many; called Flash and everyone seemed to hate it; a mass medium. now it’s called AJAX, and for the moment, it’s not getting bad press). With its own brand Ten years down the line, many visionary con- new lexicon (folksonomies, RSS, tagging, so- sultants and bloggers see 2005 as a kind of cial software, APIs) and a catchy label that second chance for the Web. Or at least for sums it all up as a marketable brand. Forget the kind of Web that was born in 1995 and the dot-coms; welcome to Web 2.0. seemed to die for good in 2001, when the risk capital tap in Silicon Valley ran dry and the Web 2.0 is the dream that, little by little and famous “dot com bubble” burst, taking with without making too much noise, has been it dozens of entrepreneurs in casual dress taking shape in the kitchens of the Internet and offices furnished with ridiculously over- industry over the last two years. An in-depth priced Aeron chairs. Obviously the decline of re-invention of the strategies and architec- the dot-com era wasn’t the end of anything tures that are the bases for online services truly important (in fact, it was the begin- and promise to lay the web’s foundations for ning of a much more active and interesting the next decade. A model in which ‘library of web, consisting of a blogosphere, wikis and Babel’ metaphors will be obsolete, because smart mobs). But unlike the 1995 web, the there will less and less closed documents to new web that is being shaped today may store and distribute. In the new web, the have truly far-reaching effects. The promises metaphors to work with are the radar for are exciting, the technologies spectacularly monitoring the dynamic evolution of objects, promising. And no one really knows yet what the control panel full of potentiometers, the the results will be. barometers that provide a real-time reading of the state of things. But maybe we can say On the face of it, the symptoms are familiar. it without leaving Borges: The new web is An excitable stock market. (Google, the true much more like The Aleph than the infinite star of the new economy, is turning out to library or the book of sand. 179 The good news is that the industry seems to that is opening up now. have learnt a lot from its mistakes the first time around, and the new revolution is not «The first web was fairly static, and it was ba- being built behind the backs on internet us- sically a “read only” affair. For the most part, ers, but rather with their indispensable col- we’d simply download text and images from laboration and complicity. The 2000-2001 remote sites that were updated periodically debacle clearly showed that the strategy with new text and graphics. » of considering users as simply passive con- sumers, whose level of participation can be Thanks to the combination of different limited to selecting checkboxes and com- technologies that have led to the AJAX pleting forms, was almost certain to fail. (Asynchronous JavaScript and XML) stand- Specially when allowing users a degree of ard, Web 2.0 is no longer static, to the extent active participation turns them into much that the pages we download no longer ex- more efficient consumers (Amazon, Ebay). ist in a final and fixed state. Where before it The digital lifestyle promoted by Apple and was necessary to reload a page in order to the self-organised revolutions of the Blogo- replace one version of a file with another, sphere and Peer-to-Peer have convinced now its is possible to update pages as they the industry that people love to create and are loaded, so that the status is modified in share content, and are prepared to do most real time, based on the user’s decisions. See of the work (generate, distribute and clas- Google Suggest , for example, a service in sify) if they are given the appropriate tools which, as you type a query into the search to do it with. The ethic of the remix and the box, the search engine suggests the most derivative, helped along by the boom in ini- popular terms beginning with those char- tiatives such as Creative Commons licences acters, together with the number of results and their widespread support, found itself generated by each search. Or Google Maps, before an architecture that is open to a cer- a satellite and maps service in which the im- tain point, which allows me to combine and ages are loaded and displayed in real time, re-create my data with that of others using as we move around in a specific direction. attractive, flexible and dynamic interfaces that I can configure to my taste, courtesy of «[...] The first big shift came when the web the major online services. Of all of the Inter- became more of a read-write system. This net’s incarnations, Web 2.0 is the closest to was a huge change, and it’s still in progress. the vision of the Internet as a shared nerv- The big change in the read-write sphere ous system, a distributed global intelligence, came about because of applications such as where a structure of meanings emerges weblogs and wikis. Not only could people from collaborative processes developed by make their own sites, but they could update all its users. Even when these processes are them easily and rapidly. » as banal as labelling millions of photographs and assigning key words to them. After assuming the revolution of content publishing systems like weblogs and wikis, Three steps towards Web 2.0 the web 2.0 focus is moving from informa- tion to metainformation. The volume of Dan Gillmor, an expert in participatory jour- data generated is becoming so large that it nalism and author of the excellent We the is worthless unless accompanied by other Media report, gives a clear explanation of data that assigns a hierarchy and meaning the different historical stages of the Web, to it. The strategy of giving users the tools and how they differ from the transition stage to collectively classify information has been 180 defined as ‘folksonomy’, and it’s most popu- been the first important step towards an lar implementation are tags or labels. As automated and programmable web. To il- “super blogger” Jason Kottke sees it, if blogs lustrate it with an image, RSS allows you to democratised content publishing, then folk- extract the juice (the content) from a web sonomies are democratising information ar- page and throw away the peel (the design). chitecture. Users of Flickr, for example, don’t Once all the content in a page is codified in just share their photographs through the this feed (data flow), it can be periodically service. By assigning different labels that as- transferred to any other Web interface de- sociate meanings to the photographs, they signed by a different user. Initially, net users are constructing a large semantic structure have mainly used RSS to inform them when of images that can be explored in different a website is updated and what the new con- directions. Users of the social bookmarks tent is, but it is possible to do many other manager del.icio.us use keywords to label things with this standard: from providing their personal collection of links, thus gen- the latest timetable incidents for the London erating an accurate thematic classification underground, to real time monitoring of of the daily growth of the Web. The del.icio. share prices on the stock exchange. us community is implementing the most effective simulacrum of the old dream of a Following the popularisation of RSS, the Semantic Web, a Web that understands it- next important step has been to make the self. “application programming interfaces”, or APIs, of the most popular services available «The emerging web is one in which the ma- to net users. An API allows information to chines talk as much to each other as humans be extracted from the database of a major talk to machines or to other humans. As the online service (Google, Amazon, Flickr) and Net is the rough equivalent of an operating added to any other application that we cre- system, we’re learning to program the Web ate. It’s what allows us, for example, to in- itself. » clude a Google search box in another page.
Recommended publications
  • How Collective Intelligence Fosters Incremental Innovation
    Journal of Open Innovation: Technology, Market, and Complexity Article How Collective Intelligence Fosters Incremental Innovation Jung-Yong Lee 1 and Chang-Hyun Jin 2,* 1 Department of Business Administration, SungKyunKwan University, Seoul 03063, Korea 2 Department of Business Administration, Kyonggi University, Suwon 16227, Korea * Correspondence: [email protected] Received: 2 July 2019; Accepted: 7 August 2019; Published: 8 August 2019 Abstract: The study aims to identify motivational factors that lead to collective intelligence and understand how these factors relate to each other and to innovation in enterprises. The study used the convenience sampling of corporate employees who use collective intelligence from corporate panel members (n = 1500). Collective intelligence was found to affect work process, operations, and service innovation. When corporate employees work in an environment where collective intelligence (CI) is highly developed, work procedures or efficiency may differ depending on the onset of CI. This raises the importance of CI within an organization and implies the importance of finding means to vitalize CI. This study provides significant implications for corporations utilizing collective intelligence services, such as online communities. Firstly, such corporations vitalize their services by raising the quality of information and knowledge shared in their workplaces; and secondly, contribution motivations that consider the characteristics of knowledge and information contributors require further development. Keywords: collective intelligence; social contribution motivation; personal contribution motivation; work process; operation; service innovation; incremental innovation 1. Introduction The ubiquity of information communication technologies—increasingly brought on by recent breakthrough developments—is apparent as a means of inducing intrinsic yet innovative change across corporate management practices. Competition is becoming among corporations that fight for survival amidst a rapidly changing global economic environment.
    [Show full text]
  • Collective Intelligence and the Blockchain
    Collective intelligence and the blockchain: Technology, communities and social experiments Andrea Baronchelli1,2,3,* 1City University of London, Department of Mathematics, London EC1V 0HB, UK 2The Alan Turing Institute, British Library, 96 Euston Road, London NW12DB, UK 3UCL Centre for Blockchain Technologies, University College London, London, UK. *[email protected] Blockchains are still perceived chiefly as a new technology. But each blockchain is also a community and a social experiment, built around social consensus. Here I discuss three examples showing how collective intelligence can help, threat or capitalize on blockchain- based ecosystems. They concern the immutability of smart contracts, code transparency and new forms of property. The examples show that more research, new norms and, eventually, laws are needed to manage the interaction between collective behaviour and the blockchain technology. Insights from researchers in collective intelligence can help society rise up to the challenge. For most people, blockchain technology is about on-chain consensus. And it certainly is. A blockchain provides users with a method and incentives for validating and storing a value or transaction without the need to trust a central authority, or any other participants in the system. Once approved, the transaction is recorded in an open ledger that cannot be altered retroactively. Since the system is trustless, everyone can join the network and read, write, or participate within the blockchain (in this article, I am considering only public and permissionless blockchains).1 But a public blockchain is not a self-contained universe. As a socio-technical system, its life extents behind the user base. For example, a blockchain can provide competition to existent socio-economic players, and it is shaped by what users do with it and, eventually, by the law.2, 3 Continuous updates and strategic decisions are therefore required to keep up with such a rapidly evolving landscape, meaning that blockchains are not self-sufficient.
    [Show full text]
  • Collective Intelligence: an Overview
    Collective Intelligence: An Overview What is Collective Intelligence? The Internet has given rise to some remarkable technologies that enable people to collaborate en masse. In barely a decade, the biggest encyclopaedia in human history has been written by millions of authors with no centralised control. In under a year, ordinary people classified more than 50 million photos of distant worlds to help astronomers understand how galaxies are formed. All over the world, organisations are starting to open up social networks and collaborative environments from which emanate an endless stream of data and insight. The potential that lies within interconnected networks of computers and humans is only just starting to be realised. We all possess intelligence. However, intelligence can be thought of not only as something that arises within human brains – it also arises in groups of people. This is Collective Intelligence – individuals acting together to combine their knowledge and insight. Collective Intelligence is an emergent property. It emerges from the group, it does not reside within any individual members. The Wisdom of Crowds is simply another term for Collective Intelligence, stemming from the work of British scientist Sir Francis Galton. At a livestock exhibition in 1906, Galton observed a competition where people had to guess the weight of an ox. At the end of the contest, Galton gathered all the guesses and calculated the average. The crowd’s estimate turned out to be near perfect. Galton referred to this as the collective wisdom of the crowd: the fact that groups of people can be more intelligent than an intelligent individual and that groups do not always require intelligent people to reach a smart decision or outcome.
    [Show full text]
  • Henry Jenkins Convergence Culture Where Old and New Media
    Henry Jenkins Convergence Culture Where Old and New Media Collide n New York University Press • NewYork and London Skenovano pro studijni ucely NEW YORK UNIVERSITY PRESS New York and London www.nyupress. org © 2006 by New York University All rights reserved Library of Congress Cataloging-in-Publication Data Jenkins, Henry, 1958- Convergence culture : where old and new media collide / Henry Jenkins, p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8147-4281-5 (cloth : alk. paper) ISBN-10: 0-8147-4281-5 (cloth : alk. paper) 1. Mass media and culture—United States. 2. Popular culture—United States. I. Title. P94.65.U6J46 2006 302.230973—dc22 2006007358 New York University Press books are printed on acid-free paper, and their binding materials are chosen for strength and durability. Manufactured in the United States of America c 15 14 13 12 11 p 10 987654321 Skenovano pro studijni ucely Contents Acknowledgments vii Introduction: "Worship at the Altar of Convergence": A New Paradigm for Understanding Media Change 1 1 Spoiling Survivor: The Anatomy of a Knowledge Community 25 2 Buying into American Idol: How We are Being Sold on Reality TV 59 3 Searching for the Origami Unicorn: The Matrix and Transmedia Storytelling 93 4 Quentin Tarantino's Star Wars? Grassroots Creativity Meets the Media Industry 131 5 Why Heather Can Write: Media Literacy and the Harry Potter Wars 169 6 Photoshop for Democracy: The New Relationship between Politics and Popular Culture 206 Conclusion: Democratizing Television? The Politics of Participation 240 Notes 261 Glossary 279 Index 295 About the Author 308 V Skenovano pro studijni ucely Acknowledgments Writing this book has been an epic journey, helped along by many hands.
    [Show full text]
  • Social Media and Collective Intelligence: Ongoing and Future Research Streams
    Social Media and Collective Intelligence: Ongoing and Future Research Streams Detlef Schoder, Peter A. Gloor, Panagiotis Takis Metaxas The tremendous growth in the use of Social Media has led to radical paradigm shifts in the ways we communicate, collaborate, consume, and create information. Our focus in this special issue is on the reciprocal interplay of Social Media and Collective Intelligence. We therefore discuss constituting attributes of Social Media and Collective Intelligence, and we structure the rapidly growing body of literature including adjacent research streams such as Social Network Analysis, Web Science, and Computational Social Science. We conclude by making propositions for future research where in particular the disciplines of artificial intelligence, computer science, and information systems can substantially contribute to the interdisciplinary academic discourse. Introduction Over the last few years, the use of Social Media has increased tremendously all over the world. For example, Facebook has increased the number of its subscribers worldwide from approx. 660 million in March 2011 to approx. 840 million in March 2012 (http://www.internetworldstats.com/facebook.htm). At the time of this writing, according to Twitter announcements, the number of ‘tweets’ people send is more than one billion every 3 days or more than 4,000 tweets/sec each consisting of a text message of 140 characters or less, and the number of Wikipedia articles has increased from 3.5 million in January 2011 to 3.8 million in January 2012 (http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia). The Chinese microblogging service Sina Weibo, claims to have registered more than 300 million users in just 3 years.
    [Show full text]
  • Collective Intelligence for Knowledge Building and Research in Communities of Practice and Virtual Learning Environments: a Project Experience
    International Journal of Health Research and Innovation, vol. 2, no. 1, 2014, 51-64 ISSN: 2051-5057 (print version), 2051-5065 (online) Scienpress Ltd, 2014 Collective Intelligence for Knowledge Building and Research in Communities of Practice and Virtual Learning Environments: A Project Experience Kleopatra Alamantariotou1, Athina Lazakidou2, Anastasia Topalidou3, Georgia Kontosorou4, Maria Tsouri5, Michaela Michel-Schuldt6 and Charalambos Samantzis7 Abstract There is little evidence about how collective intelligence, social networks, and communities of practice work in maternal health projects. In this paper, we discuss the approaches towards collective intelligence in a project by focusing on the virtual and web- based environments communities of practice and social network approach. This paper builds upon a research project IS0907 COST action and focuses on the communities of practice, social media within organization and team projects, and how through these networks and communities collective intelligence is building. Also, the current investigation stands as an example of COST IS0907 team and the relationship built between countries and communities of practice through working groups, manage knowledge transfer, and improve research collaboration and partnerships. This 1Phd candidate Nursing and Midwifery (innovation and mobile health). Faculty of Health science, Trinity College Dublin, College Green, Dublin. 2Assistant Professor of Health informatics, Faculty of Human Movement & Quality of Life Sciences, University of Peloponnese, Department of Nursing, OrthiasArtemidos&Plateon, GR- 23100, Sparti, Greece. 3PhD Candidate in Orthopaedic Biomechanics, Department of Othopaedics and Traumatology, Faculty of Medicine, University of Crete-Greece. 4Msc in health informatics City University London, School of Informatics, City University London, Northampton Square, London EC1V 0HB UK 5Phd candidate of Local Development and Global Dynamics , School of Social Sciences, University of Trento, Via Verdi 26, 38122, Trento, Italy.
    [Show full text]
  • Wisdom of Enterprise Knowledge Graphs
    Wisdom of Enterprise Knowledge Graphs The path to collective intelligence within your company Wisdom of Enterprise Knowledge Graphs | The path to collective intelligence within your company “ Intelligence is the ability to adapt to change.” Stephen Hawking 02 Wisdom of Enterprise Knowledge Graphs | The path to collective intelligence within your company Preface 04 Use Cases 06 Impact analysis 06 AI-based decision-making 07 Product DNA and root-cause analysis 08 Intelligent data governance 09 Context based knowledge transformation 10 Leverage knowledge from external sources 11 What are Knowledge Graphs? 12 The foundation for Knowledge Graphs 14 Conclusion 15 Contact 16 03 Wisdom of Enterprise Knowledge Graphs | The path to collective intelligence within your company Preface Today, companies are relying more and more on artificial intelligence in their decision-making processes. Semantic AI enables machines to solve complex problems and explain to users how their recommendations were derived. It is the key to collective intelligence within a company – manifested in Knowledge Graphs. Unleashing the power of knowledge is one That said, it is extremely time consuming of the most crucial tasks for enterprises to share your domain knowledge. First you striving to stay competitive. Knowledge, have to structure and adapt the informa- however, is not just data thrown into a tion to fit into a pre-defined data model. database. It is a complex, dynamic model that puts every piece of information into a Knowledge Graphs connect knowledge larger frame, builds a world around it and from different domains, data models and reveals its connections and meaning in a heterogeneous data formats without specific context.
    [Show full text]
  • Collective Intelligence UNIT 4
    LESSON PLAN GRADES 9-12 Collective Intelligence UNIT 4 Essential Question Estimated time: 45 minutes What are the benefits and drawbacks of people working together to create information online? Standards Alignment – Common Core: Lesson Overview Students analyze the statement “The whole is better than the sum of its grades 9-10: RI.4, RI.7, RI.10, parts” as a springboard to understanding the concepts of synergy and W.4, W.7, W.8, W.10, SL.1a, collective intelligence. They consider both the benefits and drawbacks SL.1b, SL.1c, SL.1d, SL.3, SL.4, of using collective intelligence in different contexts. Students work in SL.5 groups to develop materials for a website about their school, and then grades 11-12: RL.4, RL.10, compare their experiences. RI.4, RI.7, RI.10, W.4, W.6, W.7, W.8, W.10, SL.1a, SL.1b, SL.1c, Learning Objectives SL.1d, SL.2, SL.3, SL.4, SL.5, L.6 Students will be able to ... NETS•S: 1a, 1c, 1d, 2a, 2d, 3b, • learn about the concept of collective intelligence, and how it works 3d, 4a, 4c, 5b, 6a both online and offline. • consider when collective intelligence may be valuable or not. Key Vocabulary – • explore the benefits and drawbacks of working as a team to create new information or products. synergy: two or more things working together to produce something that each could not Materials and Preparation achieve separately • Copy the MySchool Student Handout, one for each group of four or five students.
    [Show full text]
  • The Dilated Triple
    The Dilated Triple Marko A. Rodriguez, Alberto Pepe, and Joshua Shinavier Abstract The basic unit of meaning on the Semantic Web is the RDF state- ment, or triple, which combines a distinct subject, predicate and object to make a definite assertion about the world. A set of triples constitutes a graph, to which they give a collective meaning. It is upon this simple foundation that the rich, complex knowledge structures of the Semantic Web are built. Yet the very expressiveness of RDF, by inviting comparison with real-world knowledge, highlights a fundamental shortcoming, in that RDF is limited to statements of absolute fact, independent of the context in which a statement is asserted. This is in stark contrast with the thoroughly context-sensitive nature of human thought. The model presented here provides a particularly simple means of contextualizing an RDF triple by associating it with related statements in the same graph. This approach, in combination with a notion of graph similarity, is sufficient to select only those statements from an RDF graph which are subjectively most relevant to the context of the requesting process. Rodriguez, M.A., Pepe, A., Shinavier, J., \The Dilated Triple," Emergent Web Intelligence: Advanced Semantic Technologies, Advanced Information and Knowledge Processing series, eds. R. Chbeir, A. Hassanien, A. Abraham, and Y. Badr, Springer-Verlag, pages 3-16, ISBN:978-1-84996-076-2, June 2010. Marko A. Rodriguez T-5, Center for Nonlinear Studies, Los Alamos National Laboratory, e-mail: [email protected] arXiv:1006.1080v1 [cs.AI] 6 Jun 2010 Alberto Pepe Center for Embedded Networked Sensing, University of California at Los Angeles, e-mail: [email protected] Joshua Shinavier Tetherless World Constellation, Rensselaer Polytechnic Institute e-mail: [email protected] 1 2 Marko A.
    [Show full text]
  • On the Role of Stigmergy in Cognition
    Noname manuscript No. (will be inserted by the editor) On the Role of Stigmergy in Cognition Lu´ısCorreia · Ana M. Sebasti~ao · Pedro Santana Received: date / Accepted: date Abstract Cognition in animals is produced by the self- 1 Introduction organized activity of mutually entrained body and brain. Given that stigmergy plays a major role in self-org- Swarm models are one of the most recent approaches anization of societies, we identify stigmergic behavior to cognition. They naturally map the cognitive capabil- in cognitive systems, as a common mechanism ranging ities of animal collectives such as termites as studied by from brain activity to social systems. We analyse natu- Turner (2011b), and they can also support individual ral societies and artificial systems exploiting stigmergy cognition, as shown in a realisation on mobile robots by to produce cognition. Several authors have identified Santana and Correia (2010). In the former case we are the importance of stigmergy in the behavior and cogni- in presence of cognition of the colony, which is situated tion of social systems. However, the perspective of stig- at a larger scale, when compared to that of each indi- mergy playing a central role in brain activity is novel, to vidual. In the latter case the swarm model forms the the best of our knowledge. We present several evidences perception of cognitive concepts by a single agent, the of such processes in the brain and discuss their impor- robot controller, which is external to the swarm. tance in the formation of cognition. With this we try Common to both cases above is the collective im- to motivate further research on stigmergy as a relevant pinging on the individuals' behavior and a strong em- component for intelligent systems.
    [Show full text]
  • Harnessing Collective Intelligence for the Learning Communities; a Review of Web 2.0 and Social Computing Technologies
    Journal of Computer Science and Information Technology June 2014, Vol. 2, No. 2, pp. 111-129 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright © The Author(s). 2014. All Rights Reserved. Published by American Research Institute for Policy Development Harnessing Collective Intelligence for the Learning Communities; a Review of Web 2.0 and Social Computing Technologies R. K. Sungkur1 and D. Rungen1 Abstract Web 2.0 and Social Computing is based upon the knowledge of connecting people globally using adequate technologies to increase people interaction. Technology has always played a key role for innovation in education, and with the advent of Web 2.0 and social computing, educators have been quick in recognizing the great potential that this represents. There has been a dramatic shift of information power and everything is decentralized, participatory and collaborative. Properly filtering and harnessing ‘user-generated content’ in web 2.0 and social computing can represent a valuable repository of knowledge for the learning communities. Nowadays, the number of people accessing social websites is rising exponentially and educators are seriously contemplating the option of using these social websites to reach the learners, especially youngsters. The Facebook phenomenon is particularly true in this situation where we find many learners sharing notes, uploading learning materials, discussing on a particular topic related to learning and education. So in a way, we find that these social websites are no longer being used only for entertainment but also for learning purposes. This is limited not only to Facebook. So many social websites together with the accompanying web 2.0 tools and features if properly used, can represent an interesting repository of knowledge.
    [Show full text]
  • A Review of Argumentation for the Social Semantic Web
    Semantic Web 4 (2013) 159–218 159 DOI 10.3233/SW-2012-0073 IOS Press A review of argumentation for the Social Semantic Web Editor(s): Harith Alani, The Open University, UK Solicited review(s): Fouad Zablith, American University of Beirut, Lebanon; Simon Buckingham Shum, The Open University, UK; Iyad Rahwan, Masdar Institute, Abu Dhabi Jodi Schneider a,*, Tudor Groza a,b and Alexandre Passant a a Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland E-mail: fi[email protected] b School of ITEE, The University of Queensland, Australia E-mail: [email protected] Abstract. Argumentation represents the study of views and opinions that humans express with the goal of reaching a conclusion through logical reasoning. Since the 1950’s, several models have been proposed to capture the essence of informal argumentation in different settings. With the emergence of the Web, and then the Semantic Web, this modeling shifted towards ontologies, while from the development perspective, we witnessed an important increase in Web 2.0 human-centered collaborative deliberation tools. Through a review of more than 150 scholarly papers, this article provides a comprehensive and comparative overview of approaches to modeling argumentation for the Social Semantic Web. We start from theoretical foundational models and investigate how they have influenced Social Web tools. We also look into Semantic Web argumentation models. Finally we end with Social Web tools for argumentation, including online applications combining Web 2.0 and Semantic Web technologies, following the path to a global World Wide Argument Web. Keywords: Argumentation, Semantic Web, Social Web, ontologies 1.
    [Show full text]