Conservation Biology and Global Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.CONSERVATION GENETICS. APPLYING EVOLUTIONARY
Mètode Science Studies Journal ISSN: 2174-3487 [email protected] Universitat de València España Caballero Rúa, Armando CONSERVATION GENETICS. APPLYING EVOLUTIONARY CONCEPTS TO THE CONSERVATION OF BIOLOGICAL DIVERSITY Mètode Science Studies Journal, núm. 4, 2014, pp. 73-77 Universitat de València Valencia, España Available in: http://www.redalyc.org/articulo.oa?id=511751359009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MONOGRAPH MÈTODE Science Studies Journal, 4 (2014): 73-77. University of Valencia. DOI: 10.7203/metode.78.2452 ISSN: 2174-3487. Article received: 01/03/2013, accepted: 02/05/2013. CONSERVATION GENETICS APPLYING EVOLUTIONARY CONCEPTS TO THE CONSERVATION OF BIOLOGICAL DIVERSITY ARMANDO CABALLERO RÚA Greater understanding of the forces driving evolutionary change and infl uencing populations, together with the latest genetic analysis techniques, have helped conserve of biodiversity for the last twenty years. This new application of genetics is called conservation genetics. Keywords: genetic drift, inbreeding, extinction vortex, effective population size. One of the most pressing problems caused by human 2012) are the pillars supporting conservation genetics. population growth and the irresponsible use of The launch in 2000 of the journal Conservation natural resources is the conservation of biodiversity. Genetics, dealing specifi cally with this fi eld, and Species are disappearing at a breakneck pace and a more recently, in 2009, of the journal Conservation growing number of them require human intervention Genetics Resources highlight the importance of to optimize their management and ensure their this new application of population and evolutionary survival. -
The Impact of Environmental Noise on Song Amplitude in a Territorial Bird
Journal of Animal Blackwell Publishing, Ltd. Ecology 2004 The impact of environmental noise on song amplitude 73, 434–440 in a territorial bird HENRIK BRUMM Institute of Biology, Behavioural Biology, Free University, Berlin Summary 1. The impact of environmental background noise on the performance of territorial songs was examined in free-ranging nightingales (Luscinia megarhynchos Brehm). An analysis of sound pressure levels revealed that males at noisier locations sang with higher sound levels than birds in territories less affected by background sounds. 2. This is the first evidence of a noise-dependent vocal amplitude regulation in the natural environment of an animal. 3. The results yielded demonstrate that the birds tried to mitigate the impairments on their communication caused by masking noise. This behaviour may help to maintain a given transmission distance of songs, which are used in territory defence and mate attraction. At the same time, birds forced to sing with higher amplitudes have to bear the increased costs of singing. 4. This suggests that in songbirds the level of environmental noise in a territory will contribute to its quality and thus considerably affect the behavioural ecology of singing males. Key-words: acoustical masking, birdsong, Lombard effect, Luscinia megarhynchos, vocal amplitude. Journal of Animal Ecology (2004) 73, 434–440 is the noise produced by torrents and waterfalls. An Introduction evolutionary response of frogs and birds living in such Acoustic communication is constrained considerably habitats is to evade masking by producing high-pitched by environmental factors, such as habitat-dependent vocalizations in narrow frequency bands (Dubois & sound transmission properties related to microclimate Martens 1984). -
Genetic and Demographic Dynamics of Small Populations of Silene Latifolia
Heredity (2003) 90, 181–186 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic and demographic dynamics of small populations of Silene latifolia CM Richards, SN Emery and DE McCauley Department of Biological Sciences, Vanderbilt University, PO Box 1812, Station B, Nashville, TN 37235, USA Small local populations of Silene alba, a short-lived herbac- populations doubled in size between samples, while others eous plant, were sampled in 1994 and again in 1999. shrank by more than 75%. Similarly, expected heterozygosity Sampling included estimates of population size and genetic and allele number increased by more than two-fold in diversity, as measured at six polymorphic allozyme loci. individual populations and decreased by more than three- When averaged across populations, there was very little fold in others. When population-specific change in number change between samples (about three generations) in and change in measures of genetic diversity were considered population size, measures of within-population genetic together, significant positive correlations were found be- diversity such as number of alleles or expected hetero- tween the demographic and genetic variables. It is specu- zygosity, or in the apportionment of genetic diversity within lated that some populations were released from the and among populations as measured by Fst. However, demographic consequences of inbreeding depression by individual populations changed considerably, both in terms gene flow. of numbers of individuals and genetic composition. Some Heredity (2003) 90, 181–186. doi:10.1038/sj.hdy.6800214 Keywords: genetic diversity; demography; inbreeding depression; gene flow Introduction 1986; Lynch et al, 1995), the interaction of genetics and demography could also influence population persistence How genetics and demography interact to influence in common species, because it is generally accepted that population viability has been a long-standing question in even many abundant species are not uniformly distrib- conservation biology. -
Uganda and Rwanda: Shoebill Experience, Nyungwe’S Albertine Rift and Great Apes
MEGAFARI: Uganda and Rwanda: Shoebill experience, Nyungwe’s Albertine Rift and Great Apes 16 – 27 April 2010 (12 days), Leader: Keith Barnes, Custom trip Photos by Keith Barnes. All photos taken on this trip. The spectacular Shoebill was the star of the show in Uganda, and a much-wanted species by all. Introduction This was the second leg of the Megafari – a true trip of a lifetime for most of the participants. Our Tanzania leg had already been the most successful trip we had ever had, netting an incredible 426 bird species in only 11 days. The main aims of the Uganda and Rwanda leg was to see a Shoebill stalking in deep Papyrus swamps, score a gamut of rainforest birds in both the lowlands of Budongo and then also the impressive montane forests of the incredible Nyungwe NP, and to see primates and of course, the irrepressible great apes, Chimpanzee and Mountain Gorilla. Fortunately, we achieved all these aims, netting 417 bird species on this 12-day leg of the trip, as well as accumulating an incredible 675 bird species and 62 mammals in just over three-weeks of the Megafari. The Megafari was a boon for spectacular birds and we saw 51 species of bird of prey, 11 species of turaco, 11 species of kingfisher, 10 species of bee-eater, 12 species of hornbill, and 25 species of sunbird. We also saw the famous Big-5 mammals and had incredible encounters with Mountain Gorillas and Chimpanzees amongst 11 species of primates. For the extremely successful Tanzania portion of the tour, click here. -
New Birds in Africa New Birds in Africa
1 2 3 4 5 6 7 NEWNEW BIRDSBIRDS ININ AFRICAAFRICA 8 9 10 11 The last 50 years 12 13 Text by Phil Hockey 14 15 Illustrations by Martin Woodcock from Birds of Africa, vols 3 and 4, 16 reproduced with kind permission of Academic Press, and 17 David Quinn (Algerian Nuthatch) reproduced from Tits, Nuthatches & 18 Treecreepers, with kind permission of Russel Friedman Books. 19 20 New birds are still being discovered in Africa and 21 elsewhere, proof that one of the secret dreams of most birders 22 23 can still be realized. This article deals specifically with African discoveries 24 and excludes nearby Madagascar. African discoveries have ranged from the cedar forests of 25 northern Algeria, site of the discovery of the Algerian Nuthatch 26 27 (above), all the way south to the east coast of South Africa. 28 29 ome of the recent bird discoveries in Africa have come case, of their discoverer. In 1972, the late Dr Alexandre 30 Sfrom explorations of poorly-known areas, such as the Prigogine described a new species of greenbul from 31 remote highland forests of eastern Zaïre. Other new spe- Nyamupe in eastern Zaïre, which he named Andropadus 32 cies have been described by applying modern molecular hallae. The bird has never been seen or collected since and 33 techniques capable of detecting major genetic differences Prigogine himself subse- quently decided that 34 between birds that were previously thought to be races of the specimen was of a melanis- 35 the same species. The recent ‘splitting’ of the Northern tic Little Greenbul Andropadus 36 and Southern black korhaans Eupodotis afraoides/afra of virens, a species with a 37 southern Africa is one example. -
Conservation Genetics – Science in the Service of Nature
#0# Acta Biologica 27/2020 | www.wnus.edu.pl/ab | DOI: 10.18276/ab.2020.27-12 | strony 131–141 Conservation genetics – science in the service of nature Cansel Taşkın,1 Jakub Skorupski2 1 Department of Biology, Ankara University, 06930 Ankara, Turkey, ORCID: 0000-0001-6899-701X 2 Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin; Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 70-374 Szczecin, Poland Corresponding author e-mail: [email protected] Keywords ecogenomics, extinction risk, extinction vortex, genetic load, genomics, inbreeding depression, management units Abstract Conservation genetics is a subdicipline of conservation biology which deals with the extinction risk and many other problems of nature conservation by using genetic tools and techniques. Conservation genetics is a very good example of the practical use of scientific achievements in nature protection. Although its name seems to be self-defining, its specific area of interest, conceptual apparatus and methodological workshop are not widely known and recognizable. The purpose of this review is to clarify any ambiguities and inconsistencies in this respect. It explore what is conservation genetics, what research and practical issues does it deal with and how they can be solved. Genetyka konserwatorska – nauka w służbie przyrody Słowa kluczowe depresja wsobna, ekogenomika, genomika, jednostki zarządzania, obciążenie genetyczne, ryzyko wyginięcia, wir wymierania Streszczenie Genetyka konserwatorska jest subdyscypliną biologii konserwatorskiej, która zajmuje się ryzykiem wyginięcia gatunków i wieloma innymi problemami ochrony przyrody, przy użyciu narzędzi i technik genetycznych. Genetyka konserwatorska jest bardzo dobrym przykładem praktycznego wykorzystania osiągnięć nauki w ochronie przyrody. -
Birding Tour to Ghana Specializing on Upper Guinea Forest 12–26 January 2018
Birding Tour to Ghana Specializing on Upper Guinea Forest 12–26 January 2018 Chocolate-backed Kingfisher, Ankasa Resource Reserve (Dan Casey photo) Participants: Jim Brown (Missoula, MT) Dan Casey (Billings and Somers, MT) Steve Feiner (Portland, OR) Bob & Carolyn Jones (Billings, MT) Diane Kook (Bend, OR) Judy Meredith (Bend, OR) Leaders: Paul Mensah, Jackson Owusu, & Jeff Marks Prepared by Jeff Marks Executive Director, Montana Bird Advocacy Birding Ghana, Montana Bird Advocacy, January 2018, Page 1 Tour Summary Our trip spanned latitudes from about 5° to 9.5°N and longitudes from about 3°W to the prime meridian. Weather was characterized by high cloud cover and haze, in part from Harmattan winds that blow from the northeast and carry particulates from the Sahara Desert. Temperatures were relatively pleasant as a result, and precipitation was almost nonexistent. Everyone stayed healthy, the AC on the bus functioned perfectly, the tropical fruits (i.e., bananas, mangos, papayas, and pineapples) that Paul and Jackson obtained from roadside sellers were exquisite and perfectly ripe, the meals and lodgings were passable, and the jokes from Jeff tolerable, for the most part. We detected 380 species of birds, including some that were heard but not seen. We did especially well with kingfishers, bee-eaters, greenbuls, and sunbirds. We observed 28 species of diurnal raptors, which is not a large number for this part of the world, but everyone was happy with the wonderful looks we obtained of species such as African Harrier-Hawk, African Cuckoo-Hawk, Hooded Vulture, White-headed Vulture, Bat Hawk (pair at nest!), Long-tailed Hawk, Red-chested Goshawk, Grasshopper Buzzard, African Hobby, and Lanner Falcon. -
Little Grebe
A CHECKLIST OF THE BIRDS OF SAADANI. Little Grebe Black-chested Snake Eagle Redshank Little Swift White Pelican Bateleur Terek Sandpiper Eurasian Swift Pink-backed Pelican African Goshawk Sanderling White-rumped Swift Long-tailed Cormorant Steppe Eagle Curlew Sandpiper Palm Swift Darter Tawny Eagle Little Stint Bohm's Spinetail Little Bittern Augur Buzzard Black-tailed Godwit Speckled Mousebird Grey Heron Lizard Buzzard Ruff Blue-naped Mousebird Goliath Heron Pale Chanting Goshawk Turnstone Narina Trogon Cattle Egret Martial Eagle Black-winged Stilt Pied Kingfisher Green-backed Heron Crowned Eagle Avocet Malachite Kingfisher Great White Egret Fish Eagle Water Thicknee Brown-hooded Kingfisher Black Heron Black Kite Temminck's Courser Striped Kingfisher Little Egret Osprey Lesser Black-backed Gull Chestnut-bellied Kingfisher Yellow-billed Egret African Hobby White-winged Black Tern Mangrove Kingfisher Night Heron Hobby Gull-billed Tern Pygmy Kingfisher Hamerkop Kestrel Little Tern White-throated Bee-eater Open-billed Stork Red-necked Spurfowl Lesser Crested Tern Eurasian Bee-eater Woolly-necked Stork Crested Francolin Swift Tern Swallow-tailed Bee-eater Yellow-billed Stork Crested Guineafowl Caspian Tern Northern Carmine Bee-eater Hadada Ibis Helmeted Guineafowl Common Tern Blue-cheeked Bee-eater Sacred Ibis Black Crake Ring-necked Dove Little Bee-eater African Spoonbill Black-bellied Bustard Red-eyed Dove Madagascar Bee-eater Lesser Flamingo Jacana Emerald-spotted Wood Dove Lilac-breasted Roller Greater Flamingo Ringed Plover Tambourine -
Linking Ecological Structure and Process to Wildlife Conservation and Management
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2002 IMPLICATIONS OF BODY MASS PATTERNS: LINKING ECOLOGICAL STRUCTURE AND PROCESS TO WILDLIFE CONSERVATION AND MANAGEMENT Jan P. Sendzimir Craig R. Allen University of Nebraska-Lincoln, [email protected] Lance H. Gunderson [email protected] Craig A, Stow NOAA, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Other Environmental Sciences Commons Sendzimir, Jan P.; Allen, Craig R.; Gunderson, Lance H.; and Stow, Craig A,, "IMPLICATIONS OF BODY MASS PATTERNS: LINKING ECOLOGICAL STRUCTURE AND PROCESS TO WILDLIFE CONSERVATION AND MANAGEMENT" (2002). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 56. https://digitalcommons.unl.edu/ncfwrustaff/56 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Sendzimir, J., C. R. Allen, L. Gunderson and C. Stow. 2002. Implications of body mass patterns: linking ecological structure and process to wildlife conservation and management. Chapter 6 in, Bissonette, J. and I. Storch, eds. Landscape ecology and resource management: making the match. Island Press: in press. IMPLICATIONS OF BODY MASS PATTERNS: LINKING ECOLOGICAL STRUCTURE AND PROCESS TO WILDLIFE CONSERVATION AND MANAGEMENT Sendzimir, Jan P., Craig R. -
Conservation Biology Conservation Genetics
DOTTORATO IN SCIENZE AMBIENTALI Genetica e conservazione della biodiversità Ettore Randi Laboratorio di Genetica ISPRA, sede di Ozzano Emilia (BO) Università di Bologna [email protected] giovedì 1 ottobre ore 14:30-17:30 1 genetica, genomica e conservazione della biodiversità 2 conseguenze genetiche della frammentazione venerdì 2 ottobre ore 14:30-17:30 3 ibridazione naturale e antropogenica 4 monitoraggio genetico delle popolazioni naturali Corso di Dottorato in Scienze Ambientali – Università degli Studi di Milano Coordinatore: Prof. Nicola Saino; [email protected] website: http://www.environsci.unimi.it/ Genetica, genomica e conservazione della biodiversità Ettore Randi Laboratorio di Genetica ISPRA, sede di Ozzano Emilia (BO) [email protected] Images dowloaded for non-profit educational presentation use only Transition from conservation GENETICS to conservation GENOMICS Next-generation (massive parallel) sequencing: … not simply more markers Conservation Biology 1980 1986 Conservation Genetics “Conservation genetics: the theory and practice of genetics in the preservation of species as dynamic entities capable of evolving to cope with environmental change to minimize their risk of extinction” Conservation Genetics/Genomics Genetic diversity is the driver and the consequence of biological evolution protection & conservation of biodiversity protection & conservation of the processes & products of evolution The Convention on Biological Diversity CDB Rio de Janeiro 1992 Biodiversity Biodiversity = the diversity -
Understanding Processes of Recovery of the Tibetan Antelope 1 C
Overcoming extinction: understanding processes of recovery of the Tibetan antelope 1 C. LECLERC, C. BELLARD,G.M.LUQUE, AND F. COURCHAMP Ecologie, Syste´matique et Evolution, Centre national de la recherche scientifique UMR CNRS8079, Universite´ Paris-Sud, 91405 Orsay Cedex, France Citation: Leclerc, C., C. Bellard, G. M. Luque, and F. Courchamp. 2015. Overcoming extinction: understanding processes of recovery of the Tibetan antelope. Ecosphere 6(9):171. http://dx.doi.org/10.1890/ES15-00049.1 Abstract. Since the middle of the 20th century, the Tibetan antelope (Pantholops hodgsonii) has been poached for its wool to make luxury shawls, shahtoosh. This direct overexploitation caused a drastic decline in their population, with a loss of more than 90% compared to the baseline population a few decades ago. Assuming this is an anthropogenic Allee effect (AAE), human attraction for rarity can drive rare species to extinction, which could explain the increasing rates of antelope harvests, paralleling the escalating prices of shahtoosh as the species got rarer. Since 1999, international concern led to conservation actions and the population soon started increasing. This unique situation allowed the presence of an AAE in Tibetan antelope to be tested, as well as an assessment of the potential effects of conservation actions in the presence of this process. We developed a theoretical discrete-time population dynamics model and examined effects of variation in shahtoosh prices. Furthermore, we tested the effects of major conservation actions into our models assessing their relative contribution to population recovery. During the exploitation phase, we found some evidence supporting the presence of an AAE compared to non-AAE models when hunting ceased at antelope population sizes below 10% of the initial population size. -
Animals Communicate Vocally with One Another in Order to Deliver Important Messages
Center for Tropical Research July 2006 What drives song variation in tropical birds? A study across habitats and populations in Cameroon and Uganda Alex Kirschel, Graduate Student Department of Ecology and Evolutionary Biology University of California, Los Angeles Animals communicate vocally with one another in order to deliver important messages. Birds sing so that other birds of the same species know that they are there. Male birds put a lot of energy into their songs to attract females and to defend territories from rival males. Tropical rainforests contain the highest levels of biodiversity, and birds that sing in rainforests need to compete with a plethora of other vocal animals in order to transmit their signals to their intended receivers. Singing at the same time and in the same frequency range as other vocal animals can result in songs being masked and not heard by other individuals of the same species. If a male bird’s song is not heard, it is unlikely Black-headed Gonolek in the savanna at to attract a mate and pass its genes on to the next Queen Elizabeth National Park, Uganda generation. I study how the songs of birds in tropical rainforests can be affected by differences in ecology between populations. My work in Africa centers on the songs of common species and how their songs are influenced by regular and continuous background noise. Cicadas, crickets and other vocal insects cause much of this noise, and differences in the respective insect assemblages at different locations lead to much variation in ambient noise. Many insects are tied to certain habitat types so different insects can be found between rainforests and more open, drier habitats.