Francisella Novicida Cas9 Interrogates Genomic DNA with Very High Specificity and Can Be Used for Mammalian Genome Editing
Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing Sundaram Acharyaa,b,1, Arpit Mishraa,1,2, Deepanjan Paula,1, Asgar Hussain Ansaria,b, Mohd. Azhara,b, Manoj Kumara,b, Riya Rauthana,b, Namrata Sharmaa, Meghali Aicha,b, Dipanjali Sinhaa,b, Saumya Sharmaa,b, Shivani Jaina, Arjun Raya,3, Suman Jainc, Sivaprakash Ramalingama,b, Souvik Maitia,b,d, and Debojyoti Chakrabortya,b,4 aGenomics and Molecular Medicine Unit, Council of Scientific and Industrial Research—Institute of Genomics & Integrative Biology, New Delhi, 110025, India; bAcademy of Scientific & Innovative Research, Ghaziabad, 201002, India; cKamala Hospital and Research Centre, Thalassemia and Sickle Cell Society, Rajendra Nagar, Hyderabad, 500052, India; and dInstitute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research—National Chemical Laboratory, Pune, 411008, India Edited by K. VijayRaghavan, Tata Institute of Fundamental Research, Bangalore, India, and approved September 6, 2019 (received for review October 27, 2018) Genome editing using the CRISPR/Cas9 system has been used to has shown variable levels of off targeting due to tolerance of make precise heritable changes in the DNA of organisms. Although mismatches predominantly in the “nonseed” region in the sgRNA, the widely used Streptococcus pyogenes Cas9 (SpCas9) and its wherever these are encountered in the genome (20). To what engineered variants have been efficiently harnessed for numerous extent FnCas9 mediates this high specificity of target interrogation gene-editing applications across different platforms, concerns re- is not known and whether these properties can be harnessed for main regarding their putative off-targeting at multiple loci across highly specific genome editing at a given DNA loci has not been the genome.
[Show full text]