Neuromodulation of the Lingual Nerve: a Novel Technique

Total Page:16

File Type:pdf, Size:1020Kb

Neuromodulation of the Lingual Nerve: a Novel Technique CASE REPORT J Neurosurg 134:1271–1275, 2021 Neuromodulation of the lingual nerve: a novel technique Christopher E. Talbot, DO,1,2 Kevin Zhao, DO,1,2 Max Ward, BS,2 Aron Kandinov, MD,2,3 Antonios Mammis, MD,1,2 and Boris Paskhover, MD2,3 Departments of 1Neurological Surgery and 3Otolaryngology–Head & Neck Surgery, 2Rutgers New Jersey Medical School, Newark, New Jersey Acute injury of the trigeminal nerve or its branches can result in posttraumatic trigeminal neuropathy (PTTN). Affected patients suffer from chronic debilitating symptoms long after they have recovered from the inciting trauma. Symptoms vary but usually consist of paresthesia, allodynia, dysesthesia, hyperalgesia, or a combination of these symptoms. PTTN of the trigeminal nerve can result from a variety of traumas, including iatrogenic injury from various dental and maxillofa- cial procedures. Treatments include medications, pulsed radiofrequency modulation, and microsurgical repair. Although trigeminal nerve stimulation has been reported for trigeminal neuropathy, V3 implantation is often avoided because of an elevated migration risk secondary to mandibular motion, and lingual nerve implantation has not been documented. Here, the authors report on a patient who suffered from refractory PTTN despite multiple alternative treatments. He elected to undergo novel placement of a lingual nerve stimulator for neuromodulation therapy. To the best of the authors’ knowl- edge, this is the first documented case of lingual nerve stimulator implantation for lingual neuropathy, a technique for potentially reducing the risk of electrode migration. https://thejns.org/doi/abs/10.3171/2020.2.JNS193109 KEYWORDS neuromodulation; lingual; trigeminal; stimulation; burning mouth; face pain; surgical technique; peripheral nerve CUTE injury of the trigeminal nerve or its branches ing speech or eating.2 Thus, obtaining adequate symptom can result in posttraumatic trigeminal neuropathy relief in these patients is of the utmost importance in im- (PTTN), sometimes referred to as “trigeminal proving their quality of life. Although trigeminal nerve Anerve sensory neuropathy.” Affected patients suffer from stimulation has been reported for trigeminal neuropathy, chronic debilitating symptoms long after they have recov- V3 implantation is often avoided because of an elevated ered from the inciting trauma. Symptoms vary but usually migration risk secondary to mandibular motion, and lin- consist of paresthesia, allodynia, dysesthesia, hyperalge- gual nerve implantation has not been documented.9,10 To sia, or a combination of these clinical symptoms.1,2 the best of our knowledge, we present the first documented PTTN of the trigeminal nerve can result from a variety case of lingual nerve stimulator implantation for lingual of traumas, including iatrogenic injury from various dental neuropathy, and a technique for potentially reducing the and maxillofacial procedures. Lingual pain and paresthe- risk of electrode migration. This novel procedure required sia have also been reported in patients with traumatic basi- a multidisciplinary approach between otolaryngology (ear, lar skull fracture involving the foramen ovale.3 Surgery of nose, and throat [ENT] surgery) and neurosurgery for their the mandibular third molar is the most common iatrogenic respective familiarity with transoral surgery and neuro- injury, with a reported frequency ranging from 0.5% to modulation. 0.6%.1,4,5 Sagittal split mandibular ramus osteotomy, im- plant surgery, endodontic treatment, and various oral pro- Case Report cedures can also injure the lingual nerve.1,4 Lingual and/or inferior alveolar nerve injury is a known History and Physical Examination risk of many oral and maxillofacial surgeries, and while A 58-year-old man was referred to the functional neuro- the vast majority (> 90%) of cases are temporary, those surgery and otolaryngology clinic for tongue pain, numb- lasting more than 6 months are deemed permanent.6–8 The ness, and dysesthesia refractory to medical management. severity of symptoms can vary; however, up to 70% of He reported a prolonged course of pain in his tongue and patients with PTTN may report pain significantly impair- along the left anterior floor of the mouth up to the lingual ABBREVIATIONS ENT = ear, nose, and throat; PTTN = posttraumatic trigeminal neuropathy. SUBMITTED November 17, 2019. ACCEPTED February 24, 2020. INCLUDE WHEN CITING Published online April 24, 2020; DOI: 10.3171/2020.2.JNS193109. ©AANS 2021, except where prohibited by US copyright law J Neurosurg Volume 134 • April 2021 1271 Unauthenticated | Downloaded 10/07/21 09:00 AM UTC Talbot et al. FIG. 1. Illustrations showing electrode placement from medial (A) and posterior (B) perspectives with labeling of anatomically significant structures. Copyright Boris Paskhover. Published with permission. alveolar ridge. The pain was exacerbated by talking and assistance in appropriate lead placement via a submental stress but decreased with mastication. These symptoms approach (Video 1). began after genioglossus advancement with lingual fren- VIDEO 1. Intraoperative video clip of a transoral exposure using an ulum release 7 years earlier. At presentation, the patient endoscope demonstrating exposure of the left lingual nerve before had already been evaluated by multiple neurosurgeons, and after placement of a stimulator electrode. Copyright Rutgers- interventional pain specialists, otolaryngologists, oral sur- NJMS, Newark, NJ. Published with permission. Click here to view. geons, and dental practitioners without significant symp- A 2-cm incision was made in the mucosa along the medial tom relief. He had undergone pulsed radiofrequency abla- aspect of the left mandibular ramus. With the aid of a rig- tion along the left ascending ramus, which improved his id endoscope to improve visualization, careful soft-tissue symptoms transiently for 2 days. He had received multiple dissection was continued toward bone. The periosteum local anesthetic injections targeting the lingual nerve with was vertically incised, and the ascending ramus was fol- only temporary relief. He was not a candidate for nerve lowed rostrally in a subperiosteal plane until the inferior resection and reconstruction since he was out of the opti- alveolar nerve was identified entering the inferior alveolar mal time frame.11 canal. This nerve was traced proximally until its intersec- He subsequently underwent transoral partial ablation of tion with the lingual nerve was identified. The lingual the left lingual nerve, which resulted in mildly increased nerve was carefully isolated from surrounding soft tissue, numbness and transient incisional pain but no decrease and scar tissue near the nerve, from prior ablations, was in neuropathic pain. The symptoms from this mild ab- removed. The nerve’s course was traced along the floor lation dissipated over the following 2 months. Seeking of the mouth to confirm continuity and integrity, and no more aggressive treatment, the patient underwent repeat neuromas or lesions were identified along this path. The radiofrequency ablation without significant relief but with dissection was then carried 2–3 cm rostral to the inferior increased numbness. For persistent symptoms and severe alveolar branch point, toward the foramen ovale, to iden- discomfort refractory to maximal noninvasive and inva- tify a portion of the nerve not previously manipulated, for sive therapies, the patient was deemed a candidate for a optimal electrode contact. novel approach to nerve stimulation, which was performed A 1.5-cm submental incision along a natural skin crease in two stages. The patient had not undergone any previous was made, and the dissection was continued along the in- attempts at trigeminal nerve or cervical spinal cord neu- ferior edge of the mandible in a subperiosteal plane toward romodulation. the left floor of the mouth. The dissection was advanced Gross examination of the tongue and oral cavity was below the mylohyoid musculature so that its attachments unremarkable. Spasms of the intrinsic tongue muscles would not be disrupted. A tunneling sheath was then placed were not reported by the patient or observed. There were with endoscopic assistance, and a linear-array percutane- no motor deficits of the tongue or muscles of mastication. ous lead (Medtronic) was introduced into the dissected Sensory examination was significant for limited numb- pocket (Fig. 1). The lead was pushed into place while pal- ness over the left anterolateral margin of the tongue and pating its path along the floor of the mouth. The stimulator accompanied by a surrounding region of dysesthesia. was situated posterior and parallel to the vertical segment of the lingual nerve, and electrodes were confirmed to be Operative Technique in contact with the nerve under endoscopic visualization To begin, the ENT surgeon performed a careful trans- (Fig. 2). Contacts of the stimulator were confirmed cephal- oral dissection to the lingual nerve for identification and ically with contacts along the main branch of V3. 1272 J Neurosurg Volume 134 • April 2021 Unauthenticated | Downloaded 10/07/21 09:00 AM UTC Talbot et al. FIG. 2. Endoscopic visualization of the stimulator electrode alongside the left lingual nerve. The left medial mandibular cortex is marked with an asterisk. The electrode was then anchored to the submental peri- osteum to permit the electrode to move as a single unit with the mandible in an effort to minimize the risk of elec- trode migration. Electrode wires were then
Recommended publications
  • Lingual Nerve Course and Its Communication with Hypoglossal
    International Journal of Health and Clinical Research, 2021;4(5):117-122 e-ISSN: 2590-3241, p-ISSN: 2590-325X ____________________________________________________________________________________________________________________________________________ Original Research Article Lingual Nerve Course and Its Communication with Hypoglossal Nerve: Variations in Cadavers in Western India Javia Mayank Kumar1, Chhabra Prabhjot Kaur2*, Anand Mahindra Kumar3 1Associate Professor, Department of Anatomy, Banas Medical College & Research Institute, Palanpur, Gujarat,India 2Assistant Professor, Department of Anatomy,Jaipur National University Institute For Medical Sciences & Research Centre, Jaipur, Rajasthan,India 3Professor,Department of Anatomy, Banas Medical College & Research Institute, Palanpur,India Received: 22-12-2020 / Revised: 09-02-2021 / Accepted: 23-02-2021 Abstract Background:Locationand variations in branching pattern of lingual nerve makes it vulnerable to injury in various oral and dental surgical procedures. Awareness of variations in distribution pattern will reduce the chances of injury to lingual nerve and post-operative complications in excision of ranulas, extraction of third molar tooth, sub mental endotracheal intubationand during difficult suspension laryngoscopy. Present study was undertaken to describe the course, morphology and variationsof lingual nerve in infra-temporal and submandibular regions and to find out communication(s) if any with hypoglossal nerve.Methods: Head and neck dissection was performed in fifteen formalin
    [Show full text]
  • Numb Tongue, Numb Lip, Numb Chin: What to Do When?
    NUMB TONGUE, NUMB LIP, NUMB CHIN: WHAT TO DO WHEN? Ramzey Tursun, DDS, FACS Marshall Green, DDS Andre Ledoux, DMD Arshad Kaleem, DMD, MD Assistant Professor, Associate Fellowship Director of Oral, Head & Neck Oncologic and Microvascular Reconstructive Surgery, DeWitt Daughtry Family Department of Surgery, Division of Oral Maxillofacial Surgery, Leonard M. Miller School of Medicine, University of Miami INTRODUCTION MECHANISM OF NERVE Microneurosurgery of the trigeminal nerve INJURIES has been in the spotlight over the last few years. The introduction of cone-beam When attempting to classify the various scanning, three-dimensional imaging, mechanisms of nerve injury in the magnetic resonance neurography, maxillofacial region, it becomes clear that endoscopic-assisted surgery, and use of the overwhelming majority are iatrogenic allogenic nerve grafts have improved the in nature. The nerves that are most often techniques that can be used for affected in dento-alveolar procedures are assessment and treatment of patients with the branches of the mandibular division of nerve injuries. Injury to the terminal cranial nerve V, i.e., the trigeminal nerve. branches of the trigeminal nerve is a well- The lingual nerve and inferior alveolar known risk associated with a wide range of nerve are most often affected, and third dental and surgical procedures. These molar surgery is the most common cause 1 injuries often heal spontaneously without of injury. medical or surgical intervention. However, they sometimes can cause a variety of None of these nerves provide motor symptoms, including lost or altered innervation. However, damage to these sensation, pain, or a combination of these, nerves can cause a significant loss of and may have an impact on speech, sensation and/or taste in affected patients.
    [Show full text]
  • The Influence of Mandibular Skeletal Characteristics on Inferior Alveolar Nerve Block Anesthesia
    pISSN 2383-9309❚eISSN 2383-9317 Original Article J Dent Anesth Pain Med 2015;15(3):113-119❚http://dx.doi.org/10.17245/jdapm.2015.15.3.113 The influence of mandibular skeletal characteristics on inferior alveolar nerve block anesthesia Tae Min You1, Kee-Deog Kim2, Jisun Huh2, Eun-Jung Woo2, Wonse Park2 1Department of Advanced General Dentistry, College of Dentistry, Dankook University, Cheonan, Korea 2Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea Background: The inferior alveolar nerve block (IANB) is the most common anesthetic techniques in dentistry; however, its success rate is low. The purpose of this study was to determine the correlation between IANB failure and mandibular skeletal characteristics Methods: In total, 693 cases of lower third molar extraction (n = 575 patients) were examined in this study. The ratio of the condylar and coronoid distances from the mandibular foramen (condyle-coronoid ratio [CC ratio]) was calculated, and the mandibular skeleton was then classified as normal, retrognathic, or prognathic. The correlation between IANB failure and sex, treatment side, and the CC ratio was assessed. Results: The IANB failure rates for normal, retrognathic, and prognathic mandibles were 7.3%, 14.5%, and 9.5%, respectively, and the failure rate was highest among those with a CC ratio < 0.8 (severe retrognathic mandible). The failure rate was significantly higher in the retrognathic group than in normal group (P = 0.019), and there was no statistically significant difference between the other two groups. Conclusions: IANB failure could be attributable, in part, to the skeletal characteristics of the mandible.
    [Show full text]
  • Anatomy of Maxillary and Mandibular Local Anesthesia
    Anatomy of Mandibular and Maxillary Local Anesthesia Patricia L. Blanton, Ph.D., D.D.S. Professor Emeritus, Department of Anatomy, Baylor College of Dentistry – TAMUS and Private Practice in Periodontics Dallas, Texas Anatomy of Mandibular and Maxillary Local Anesthesia I. Introduction A. The anatomical basis of local anesthesia 1. Infiltration anesthesia 2. Block or trunk anesthesia II. Review of the Trigeminal Nerve (Cranial n. V) – the major sensory nerve of the head A. Ophthalmic Division 1. Course a. Superior orbital fissure – root of orbit – supraorbital foramen 2. Branches – sensory B. Maxillary Division 1. Course a. Foramen rotundum – pterygopalatine fossa – inferior orbital fissure – floor of orbit – infraorbital 2. Branches - sensory a. Zygomatic nerve b. Pterygopalatine nerves [nasal (nasopalatine), orbital, palatal (greater and lesser palatine), pharyngeal] c. Posterior superior alveolar nerves d. Infraorbital nerve (middle superior alveolar nerve, anterior superior nerve) C. Mandibular Division 1. Course a. Foramen ovale – infratemporal fossa – mandibular foramen, Canal -> mental foramen 2. Branches a. Sensory (1) Long buccal nerve (2) Lingual nerve (3) Inferior alveolar nerve -> mental nerve (4) Auriculotemporal nerve b. Motor (1) Pterygoid nerves (2) Temporal nerves (3) Masseteric nerves (4) Nerve to tensor tympani (5) Nerve to tensor veli palatine (6) Nerve to mylohyoid (7) Nerve to anterior belly of digastric c. Both motor and sensory (1) Mylohyoid nerve III. Usual Routes of innervation A. Maxilla 1. Teeth a. Molars – Posterior superior alveolar nerve b. Premolars – Middle superior alveolar nerve c. Incisors and cuspids – Anterior superior alveolar nerve 2. Gingiva a. Facial/buccal – Superior alveolar nerves b. Palatal – Anterior – Nasopalatine nerve; Posterior – Greater palatine nerves B.
    [Show full text]
  • Risks and Complications of Orthodontic Miniscrews
    SPECIAL ARTICLE Risks and complications of orthodontic miniscrews Neal D. Kravitza and Budi Kusnotob Chicago, Ill The risks associated with miniscrew placement should be clearly understood by both the clinician and the patient. Complications can arise during miniscrew placement and after orthodontic loading that affect stability and patient safety. A thorough understanding of proper placement technique, bone density and landscape, peri-implant soft- tissue, regional anatomic structures, and patient home care are imperative for optimal patient safety and miniscrew success. The purpose of this article was to review the potential risks and complications of orthodontic miniscrews in regard to insertion, orthodontic loading, peri-implant soft-tissue health, and removal. (Am J Orthod Dentofacial Orthop 2007;131:00) iniscrews have proven to be a useful addition safest site for miniscrew placement.7-11 In the maxil- to the orthodontist’s armamentarium for con- lary buccal region, the greatest amount of interradicu- trol of skeletal anchorage in less compliant or lar bone is between the second premolar and the first M 12-14 noncompliant patients, but the risks involved with mini- molar, 5 to 8 mm from the alveolar crest. In the screw placement must be clearly understood by both the mandibular buccal region, the greatest amount of inter- clinician and the patient.1-3 Complications can arise dur- radicular bone is either between the second premolar ing miniscrew placement and after orthodontic loading and the first molar, or between the first molar and the in regard to stability and patient safety. A thorough un- second molar, approximately 11 mm from the alveolar derstanding of proper placement technique, bone density crest.12-14 and landscape, peri-implant soft-tissue, regional anatomi- During interradicular placement in the posterior re- cal structures, and patient home care are imperative for gion, there is a tendency for the clinician to change the optimal patient safety and miniscrew success.
    [Show full text]
  • Communication Between the Mylohyoid and Lingual Nerves: Clinical Implications
    Int. J. Morphol., Case Report 25(3):561-564, 2007. Communication Between the Mylohyoid and Lingual Nerves: Clinical Implications Comunicación entre los Nervios Milohioideo y Lingual: Implicancias Clínicas *Valéria Paula Sassoli Fazan; **Omar Andrade Rodrigues Filho & ***Fernando Matamala FAZAN, V. P. S.; RODRIGUES FILHO, O. A. & MATAMALA, F. Communication between the mylohyoid and lingual nerves: Clinical implications. Int. J. Morphol., 25(3):561-564, 2007. SUMMARY: The mylohyoid muscle plays an important role in chewing, swallowing, respiration and phonation, being the mylohyoid nerve also closely related to these important functions. It has been postulated that the mylohyoid nerve might have a role in the sensory innervation of the chin and the lower incisor teeth while the role of the mylohyoid nerve in the mandibular posterior tooth sensation is still a controversial issue. Although variations in the course of the mylohyoid nerve in relation to the mandible are frequently found on the dissecting room, they have not been satisfactorily described in the anatomical or surgical literature. It is well known that variations on the branching pattern of the mandibular nerve frequently account for the failure to obtain adequate local anesthesia in routine oral and dental procedures and also for the unexpected injury to branches of the nerves during surgery. Also, anatomical variations might be responsible for unexpected and unexplained symptoms after a certain surgical procedure. We describe the presence of a communicating branch between the mylohyoid and lingual nerves in an adult male cadaver, and discuss its clinical/surgical implications as well as its possible role on the sensory innervation of the tongue.
    [Show full text]
  • Inferior Alveolar Nerve Trajectory, Mental Foramen Location and Incidence of Mental Nerve Anterior Loop
    Med Oral Patol Oral Cir Bucal. 2017 Sep 1;22 (5):e630-5. CBCT anatomy of the inferior alveolar nerve Journal section: Oral Surgery doi:10.4317/medoral.21905 Publication Types: Research http://dx.doi.org/doi:10.4317/medoral.21905 Inferior alveolar nerve trajectory, mental foramen location and incidence of mental nerve anterior loop Miguel Velasco-Torres 1, Miguel Padial-Molina 1, Gustavo Avila-Ortiz 2, Raúl García-Delgado 3, Andrés Ca- tena 4, Pablo Galindo-Moreno 1 1 DDS, PhD, Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain 2 DDS, MS, PhD, Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, USA 3 Specialist in Dental and Maxillofacial Radiology. Private Practice. Granada, Spain 4 PhD, Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain Correspondence: School of Dentistry, University of Granada 18071 - Granada, Spain [email protected] Velasco-Torres M, Padial-Molina M, Avila-Ortiz G, García-Delgado R, Catena A, Galindo-Moreno P. Inferior alveolar nerve trajectory, mental foramen location and incidence of mental nerve anterior loop. Med Oral Received: 07/03/2017 Accepted: 21/06/2017 Patol Oral Cir Bucal. 2017 Sep 1;22 (5):e630-5. http://www.medicinaoral.com/medoralfree01/v22i5/medoralv22i5p630.pdf Article Number: 21905 http://www.medicinaoral.com/ © Medicina Oral S. L. C.I.F. B 96689336 - pISSN 1698-4447 - eISSN: 1698-6946 eMail: [email protected] Indexed in: Science Citation Index Expanded Journal Citation Reports Index Medicus, MEDLINE, PubMed Scopus, Embase and Emcare Indice Médico Español Abstract Background: Injury of the inferior alveolar nerve (IAN) is a serious intraoperative complication that may occur during routine surgical procedures, such as dental implant placement or extraction of impacted teeth.
    [Show full text]
  • Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology
    JOURNAL OF ORAL & MAXILLOFACIAL RESEARCH Juodzbalys et al. Anatomy of Mandibular Vital Structures. Part I: Mandibular Canal and Inferior Alveolar Neurovascular Bundle in Relation with Dental Implantology Gintaras Juodzbalys1, Hom-Lay Wang2, Gintautas Sabalys1 1Department of Oral and Maxillofacial Surgery, Kaunas University of Medicine, Lithuania 2Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor Michigan, USA Corresponding Author: Gintaras Juodzbalys Vainiku 12 LT- 46383, Kaunas Lithuania Phone: +370 37 29 70 55 Fax: +370 37 32 31 53 E-mail: [email protected] ABSTRACT Objectives: It is critical to determine the location and configuration of the mandibular canal and related vital structures during the implant treatment. The purpose of the present paper was to review the literature concerning the mandibular canal and inferior alveolar neurovascular bundle anatomical variations related to the implant surgery. Material and Methods: Literature was selected through the search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular canal, inferior alveolar nerve, and inferior alveolar neurovascular bundle. The search was restricted to English language articles, published from 1973 to November 2009. Additionally, a manual search in the major anatomy, dental implant, prosthetic and periodontal journals and books were performed. Results: In total, 46 literature sources were obtained and morphological aspects and variations of the anatomy related to implant treatment in posterior mandible were presented as two entities: intraosseous mandibular canal and associated inferior alveolar neurovascular bundle. Conclusions: A review of morphological aspects and variations of the anatomy related to mandibular canal and mandibular vital structures are very important especially in implant therapy since inferior alveolar neurovascular bundle exists in different locations and possesses many variations.
    [Show full text]
  • Clinical Anatomy of the Trigeminal Nerve
    Clinical Anatomy of Trigeminal through the superior orbital fissure Nerve and courses within the lateral wall of the cavernous sinus on its way The trigeminal nerve is the fifth of to the trigeminal ganglion. the twelve cranial nerves. Often Ophthalmic Nerve is formed by the referred to as "the great sensory union of the frontal nerve, nerve of the head and neck", it is nasociliary nerve, and lacrimal named for its three major sensory nerve. Branches of the ophthalmic branches. The ophthalmic nerve nerve convey sensory information (V1), maxillary nerve (V2), and from the skin of the forehead, mandibular nerve (V3) are literally upper eyelids, and lateral aspects "three twins" carrying information of the nose. about light touch, temperature, • The maxillary nerve (V2) pain, and proprioception from the enters the middle cranial fossa face and scalp to the brainstem. through foramen rotundum and may or may not pass through the • The three branches converge on cavernous sinus en route to the the trigeminal ganglion (also called trigeminal ganglion. Branches of the semilunar ganglion or the maxillary nerve convey sensory gasserian ganglion), which contains information from the lower eyelids, the cell bodies of incoming sensory zygomae, and upper lip. It is nerve fibers. The trigeminal formed by the union of the ganglion is analogous to the dorsal zygomatic nerve and infraorbital root ganglia of the spinal cord, nerve. which contain the cell bodies of • The mandibular nerve (V3) incoming sensory fibers from the enters the middle cranial fossa rest of the body. through foramen ovale, coursing • From the trigeminal ganglion, a directly into the trigeminal single large sensory root enters the ganglion.
    [Show full text]
  • Inferior Alveolar Nerve Paresthesia Caused by a Dentigerous Cyst Associated with Three Teeth
    Med Oral Patol Oral Cir Bucal 2007;12:E388-90. Dentigerous cyst associated with three teeth Med Oral Patol Oral Cir Bucal 2007;12:E388-90. Dentigerous cyst associated with three teeth Inferior alveolar nerve paresthesia caused by a dentigerous cyst associated with three teeth Mahmut Sumer 1, Burcu Baş 2, Levent Yıldız 3 (1) Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (2) Research Assistant, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (3) Associate Professor, Department of Pathology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey Correspondence: Dr. Burcu Baş Ondokuz Mayis University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, 55139, Kurupelit, Samsun, Turkey E-mail: [email protected] Sumer M, Baş B, Yıldız L. Inferior alveolar nerve paresthesia caused by Received: 29-09-2006 a dentigerous cyst associated with three teeth. Med Oral Patol Oral Cir Accepted: 22-02-2007 Bucal 2007;12:E388-90. © Medicina Oral S. L. C.I.F. B 96689336 - ISSN 1698-6946 Indexed in: -Index Medicus / MEDLINE / PubMed -EMBASE, Excerpta Medica -SCOPUS -Indice Médico Español -IBECS ABSTRACT The dentigerous cyst is a common pathologic entity associated with an impacted tooth, usually third molars. They gen- erally are asymptomatic, being found on routine dental radiographic examination. This report describes the case of a 43 year old male with a large dentigerous cyst associated with mandibular canine, first and second premolar teeth that caused paresthesia of the inferior alveolar nerve. Key words: Dentigerous cyst, inferior alveolar nerve paresthesia, mandible. INTRODUCTION Case report The dentigerous or follicular cysts are the second most A 43-year-old male was referred to the Oral and Maxillo- common type of odontogenic cysts and the most common facial Surgery Clinic with the complaint of a swelling over- developmental cysts of the jaws (1).
    [Show full text]
  • Variants of Inferior Alveolar Nerve Block: a Review 35 Anuradha M, Yashavanth Kumar D.S, Harsha .V
    CODS Journal of Dentistry Ocial Publication of College of Dental Sciences Alumni Association, Davanagere Volume 6, Issue 1, 2014 CONTENTS Director’s Message 1 V.V. Subba Reddy President’s Message 2 Vasundhara Shivanna Secretary’s Message 3 Praveen S. Basandi Editorial 4 Nandini D.B Original Articles Effect of alcohol containing and alcohol free mouth rinses on microhardness of three 5 esthetic restorative materials Vasundhara Shivanna, Rucha Nilegaonkar Prevalence and distribution of dental anomalies and fluorosis in a small cohort of 9 Indian school children and teenagers Selvamani. M , Praveen S Basandi, Madhushankari G.S Review Articles Paperless dentistry - The future 13 Mala Ram Manohar, Gajendra Bhansali Photo activated disinfection in restorative dentistry - A technical review 16 Deepak B.S, Mallikarjun Goud K, Nishanth P An overview of occupational hazards in dental practice and preventive measures. 19 Poorya Naik .D.S, Chetan .S, Gopal Krishna.B.R, Naveen Shamnur An overview on influences of estrogen and progesterone on periodontium 26 Deepa D CODS Journal of Dentistry 2014, Volume 6, Issue 1 CODS Journal of Dentistry Ocial Publication of College of Dental Sciences Alumni Association, Davanagere Volume 6, Issue 1, 2014 CONTENTS Review Articles Dental home - A new approach for child oral health care 30 Poornima P, Meghna Bajaj, Nagaveni N.B, Roopa K.B, V.V. Subba Reddy Variants of inferior alveolar nerve block: A review 35 Anuradha M, Yashavanth Kumar D.S, Harsha .V. Babji, Rahul Seth Case Reports Ellis-van Creveld syndrome affecting siblings: A case report and review 40 Mamatha G.P, Manisha Jadhav , Rajeshwari G Annigeri, Poornima .P, V.V Subba Reddy Integrated approach of ceramic and composite veneers in tetracycline stained teeth: A case report.
    [Show full text]
  • Nerve Evaluation Protocol 2014
    Nerve Evaluation Protocol 2014 TABLE OF CONTENTS INTRODUCTION .................................................................................................... 1 A REVIEW OF SENSORY NERVE INJURY ................................................................ 3 TERMINOLOGY ...................................................................................................... 5 INFORMED CONSENT ............................................................................................ 6 PREOPERATIVE EVALUATION ................................................................................ 7 TESTS FOR SENSORY NERVE FUNCTION: ........................................................... 12 MATERIALS NEEDED FOR TESTING SENSORY PERCEPTION .............................. 17 TESTING TECHNIQUE .......................................................................................... 20 REFERENCES .......................................................................................................... 23 BIBLIOGRAPHY - CORONECTOMY ..................................................................... 28 SAMPLE SENSORY RECORDING SHEETS ............................................................. 30 A HANDOUT FOR PATIENTS ............................................................................... 33 INTRODUCTION The first edition of this document was produced in the Spring of 1988. Dr. A. F. Steunenberg and Dr. M. Anthony Pogrel collaborated to produce the first edition with input from Mr. Art Curley, Esquire, and with Dr. Charles Alling editing
    [Show full text]