Tensile Stress Stimulates the Expression of Osteogenic Cytokines
Biomedical Research (Tokyo) 37 (2) 117–126, 2016 Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteo- blast differentiation 1, 2 3 4 1, 5 6 Mika IKEGAME , Yoshiaki TABUCHI , Yukihiro FURUSAWA , Mariko KAWAI , Atsuhiko HATTORI , Takashi 4 1 KONDO , and Toshio YAMAMOTO 1 Department of Oral Morphology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2 Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan; 3 Division of Molecular Genetics, Life Science Research Center, University of Toyama, Toyama, Japan; 4 Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; 5 Department of Pharma- cology, Osaka Dental University, Osaka, Japan; and 6 College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan (Received 28 January 2016; and accepted 9 February 2016) ABSTRACT Mechanical stress promotes osteoblast proliferation and differentiation from mesenchymal stem cells (MSCs). Although numerous growth factors and cytokines are known to regulate this pro- cess, information regarding the differentiation of mechanically stimulated osteoblasts from MSCs in in vivo microenvironment is limited. To determine the significant factors involved in this pro- cess, we performed a global analysis of differentially expressed genes, in response to tensile stress, in the mouse cranial suture wherein osteoblasts differentiate from MSCs. We found that the gene expression levels of several components involved in bone morphogenetic protein, Wnt, and epithelial growth factor signalings were elevated with tensile stress. Moreover gene expression of some extracellular matrices (ECMs), such as cysteine rich protein 61 (Cyr61)/CCN1 and galec- tin-9, were upregulated.
[Show full text]