(K, N) Threshold Secret Sharing Schemes
Journal of Information Processing Vol.29 266–274 (Mar. 2021) [DOI: 10.2197/ipsjjip.29.266] Technical Note New Proof Techniques Using the Properties of Circulant Matrices for XOR-based (k, n) Threshold Secret Sharing Schemes Koji Shima1,a) Hiroshi Doi1,b) Received: June 19, 2020, Accepted: December 1, 2020 Abstract: Several secret sharing schemes with low computational costs have been proposed. XOR-based secret shar- ing schemes have been reported to be a part of such low-cost schemes. However, no discussion has been provided on the connection between them and the properties of circulant matrices. In this paper, we propose several theorems of circulant matrices to discuss the rank of a matrix and then show that we can discuss XOR-based secret sharing schemes using the properties of circulant matrices. We also present an evaluation of our software implementation. Keywords: secret sharing scheme, XOR-based scheme, circulant matrix, software implementation posed. The schemes of Fujii et al. [3] and Kurihara et al. [4], [5] 1. Introduction are reported as such (k, n) threshold schemes. Kurihara et al. [6] In modern information society, a strong need exists to securely then proposed an XOR-based (k, L, n) ramp scheme. store large amounts of secret information to prevent informa- tion theft or leakage and avoid information loss. Secret shar- 1.2 Fast Schemes ing schemes are known to simultaneously satisfy the need to dis- Operations over GF(2L), where GF is the Galois or finite tribute and manage secret information, so that such information field, yield fast schemes, but one multiplication operation requires theft and loss can be prevented.
[Show full text]