<<

Jordan of a

Math 422

Schur’s Triangularization Theorem tells us that every matrix A is unitarily similar to an upper T . However, the only thing certain at this point is that the the entries of T are the eigenvalues of A. The off-diagonal entries of T seem unpredictable and out of control. Recall that the Core-Nilpotent Decomposition of a singular matrix A of index k produces a block

C 0 0 L ∙ ¸ similar to A in which C is non-singular, (C)=rank Ak , and L is nilpotent of index k.Isitpossible to simplify C and L via similarity transformations and obtain triangular matrices whose off-diagonal entries are predictable? The goal of this lecture is to do exactly this¡ ¢ for nilpotent matrices. k 1 k Let L be an n n of index k. Then L − =0and L =0. Let’s compute the eigenvalues × k k 16 k 1 k 1 k 2 of L. Suppose x =0satisfies Lx = λx; then 0=L x = L − (Lx)=L − (λx)=λL − x = λL − (Lx)= 2 k 2 6 k λ L − x = = λ x; thus λ =0is the only eigenvalue of L. ··· 1 Now if L is diagonalizable, there is an P and a diagonal matrix D such that P − LP = D. Since the diagonal entries of D are the eigenvalues of L, and λ =0is the only eigenvalue of L,wehave 1 D =0. Solving P − LP =0for L gives L =0. Thus a diagonalizable nilpotent matrix is the , or equivalently, a non-zero nilpotent matrix L is not diagonalizable. And indeed, some off-diagonal entries in the “simplified” form of L will be non-zero. Let L be a non-zero nilpotent matrix. Since L is triangularizable, there exists an invertible P such that

0 ∗ ···. ∗ 00 .. P 1LP = ⎡ ⎤ . − . . . ∗ ⎢ . . .. ⎥ ⎢ ∗ ⎥ ⎢ 00 0 ⎥ ⎢ ··· ⎥ ⎣ ⎦ The simplification procedure given in this lecture produces a matrix similar to L whose non-zero entries lie 1 exclusively on the superdiagonal of P − LP. An example of this procedure follows below.

Definition 1 Let L be nilpotent of index k and define L0 = I. For p =1, 2,...,k, let x Cn such that p 1 p 1 ∈ y = L − x =0. The Jordan chain on y of length p is the set L − x,...,Lx,x . 6 n © k 1 ª k 1 Exercise 2 Let L be nilpotent of index k. If x C satisfies L − x =0, prove that L − x,..., Lx,x is linearly independent. ∈ 6 } © 012 003 a Example 3 Let L = 003 ; then L2 = 000 and L3 =0. Let x = b ; then ⎡ 000⎤ ⎡ 000⎤ ⎡ c ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 012 a b +2c 003 a 3c Lx = 003 b = 3c and L2x = 000 b = 0 . ⎡ 000⎤ ⎡ c ⎤ ⎡ 0 ⎤ ⎡ 000⎤ ⎡ c ⎤ ⎡ 0 ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ Note that L2x, Lx, x is linearly independent iff c =0. Thus if x =[123]T , then y = L2x =[900]T and the Jordan chain on y is 6 © ª 9 8 1 0 , 9 , 2 ⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎫ ⎨ 0 0 3 ⎬ Form the matrix ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ 981⎭ P = L2x Lx x = 092 ; | | ⎡ 003⎤ £ ¤ ⎣ ⎦ 1 then 27 24 7 012 981 010 1 P 1LP = 027− 18 003 092 = 001 − 243 ⎡ 0081− ⎤ ⎡ 000⎤ ⎡ 003⎤ ⎡ 000⎤ is the “Jordan form” of L. ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Since λ =0is the only eigenvalue of an n n non-zero nilpotent L, the eigenvectors of L are exactly the non-zero vectors in N (L).Butdim N (L)

Construct a somewhat special basis for N (L) . • B Extend toabasisforCn by building Jordan chains on the elements of . • B B Definition 4 A nilpotent Jordan block is a matrix of the form

010 0 ··· .. ⎡ 001 . 0 ⎤ . ⎢ 000 .. 0 ⎥ . ⎢ ⎥ ⎢ . . . . ⎥ ⎢ . . . .. 1 ⎥ ⎢ ⎥ ⎢ 000 0 ⎥ ⎢ ··· ⎥ ⎣ ⎦ A nilpotent Jordan matrix is a block diagonal matrix of the form

J1 0 0 ···. 0 J .. 0 ⎡ 2 ⎤ , (1) . . . ⎢ . . .. 0 ⎥ ⎢ ⎥ ⎢ 00 Jm ⎥ ⎢ ··· ⎥ ⎣ ⎦ where each Ji is a nilpotent Jordan block.

When the context is clear we refer to a nilpotent Jordan matrix as a Jordan matrix.

Theorem 5 Every n n nilpotent matrix L of index k is similar to an n n Jordan matrix J in which × × the number of Jordan blocks is dim N (L); • the size of the largest Jordan block is k k; • × for 1 j k, the number of j j Jordan blocks is • ≤ ≤ × j 1 j j+1 rank L − 2rank L + rank L ; − ¡ ¢ ¡ ¢ ¡ ¢ the ordering of the Ji’s is arbitrary. •

Whereas the essentials of the proof appear in the algorithm below, we omit the details.

1 Definition 6 If L is a nilpotent matrix, a Jordan form of L is a Jordan matrix J = P − LP. The Jordan structure of L is the number and size of the Jordan blocks in every Jordan form J of L.

Theorem 5 tells us that Jordan form is unique up to ordering of the blocks Ji. Indeed, given any prescribed ordering, there is a Jordan form whose Jordan blocks appear in that prescribed order.

2 Definition 7 The Jordan Canonical Form (JCF) of a nilpotent matrix L is the Jordan form of L in which the Jordan blocks are distributed along the diagonal in order of decreasing size.

Example 8 Let us determine the Jordan structure and JCF of the nilpotent matrix

2 4 1 112011 100 3 3 3 − − − 4 5 − 2 315113 010 3 3 3 ⎡ − ⎤ ⎡ 1 − 2 2 ⎤ 2 10010row-reduce 001 L = − − − 3 − 3 3 ; ⎢ 210010⎥ −→ ⎢ 000000⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 5 3 1 1 1 1 ⎥ ⎢ 000000⎥ ⎢ − − − − − − ⎥ ⎢ ⎥ ⎢ 3 2 1 101 ⎥ ⎢ 000000⎥ ⎢ − − − − − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ the number of Jordan blocks is dim N (L)=3. Then

1 1 1 1 1 633112 1 2 2 6 6 3 6 3 3 1 1 2 000000 ⎡ − − − − − − ⎤ ⎡ ⎤ 000000row-reduce 000000 L2 = ⎢ 000000⎥ −→ ⎢ 000000⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 6 3 3 1 1 2 ⎥ ⎢ 000000⎥ ⎢ − − − − − − ⎥ ⎢ ⎥ ⎢ 6 3 3 1 1 2 ⎥ ⎢ 000000⎥ ⎢ − − − − − − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ has rank 1 and L3 =0;therefore the index (L)=3and the size of the largest Jordan block is 3 3.Let × 0 r0 = rank L =6 1 r1 = rank L =3 ¡ 2¢ r2 = rank L =1 ; ¡ 3¢ r3 = rank L =0 ¡ 4¢ r4 = rank L =0 ¡ ¢ then the number ni of i i Jordan blocks is ¡ ¢ ×

n1 = r0 2r1 + r2 =1 − n2 = r1 2r2 + r3 =1 . − n3 = r2 2r3 + r4 =1 − Obtain the JCF by distributing these blocks along the diagonal in order of decreasing size. Then the JCF of L is 010000 001000 ⎡ 000000 ⎤ . ⎢ 000010 ⎥ ⎢ ⎥ ⎢ 000000 ⎥ ⎢ ⎥ ⎢ 000000 ⎥ ⎢ ⎥ ⎣ ⎦ 1 This leaves us with the task of determining a non-singular matrix P such that P − LP is the JCF of L. As mentioned above, this process has essentially two steps. A detailed algorithm follows our next definition and a key exercise.

Definition 9 Let E be any row-echelon form of a matrix A. Let c1,...,cq index the columns of E containing th leading 1’s and let yi denote the ci column of A. The columns y1,...,yq are called the basic columns of A.

Exercise 10 Let B =[b1 bp] be an n p matrix with linearly independent columns. Prove that |···| × p multiplication by B preserves , i.e., if v1,...,vs is linearly independent in C ,then n { } Bv1,...,Bvs is linearly independent in C . { }

3 Nilpotent Reduction to JCF

Given a nilpotent matrix L of index k, set i = k 1 and let k 1 = y1,...,yq be the basic columns of k 1 − S − { } L − .

i 1 1. Extend k 1 i to a basis for R L − N (L) in the following way: S − ∪ ···∪ S ∩ i 1 (a) Let b1,...,bp be the basic columns¡ of ¢L − and let B =[b1 bp] . { } |···| (b) Solve LBx =0for x and obtain a basis v1,...,vs for N (LB); then Bv1,...,Bvs is a basis i 1 { } { } for R L − N (L) by Lemma 11 below. ∩ (c) Form¡ the matrix¢ [y1 yq Bv1 Bvs]; its basic columns y1,...,yq,Bvβ ,...,Bvβ |···| | |···| 1 j i 1 form a basis for R L − N (L) containing k 1 i. Let n o ∩ S − ∪ ···∪ S ¡ ¢ i 1 = Bvβ ,...,Bvβ . S − 1 j n o i (d) Decrement i, let y1,...,yq be the basic columns of L , and repeat step 1 until i =0.Then { } k 1 0 = b1,...,bt is a basis for N (L). S − ∪ ···∪ S { } i i 2. For each j, if bj i, find a particular solution xj of L x = bj and build a Jordan chain L xj,...,Lxj,xj . Set ∈ S i © ª pj = L xj Lxj xj ; |···| | the desired similarity transformation is defi£ned by the matrix ¤

P =[p1 pt] . |···|

i 1 Lemma 11 In the notation of the algorithm above, Bv1,...,Bvs is a basis for R L − N (L). { } ∩ ¡ ¢i 1 Proof. Note that Bvj R (B) and LBvj =0implies Bvj N (L) . But R (B)=R L − implies that ∈ ∈ Bvj R (B) N (L) for all j. The set Bv1,...,Bvs is linearly independent by Exercise 10. To show that ∈ ∩ { } ¡ ¢ n Bv1,...,Bvs spans R (B) N (L),lety R (B) N (L) . Since y R (B) , there is some u C such that { } ∩ ∈ ∩ ∈ ∈ y = Bu; since y N (L) , 0=Ly = LBu. Thus u N (LB) and we may express u in the basis v1,...,vs ∈ ∈ { } as u = c1v1 + +csvs. Therefore y = Bu = B (c1v1 + + csvs)=c1Bv1 + +csBvs and Bv1,...,Bvs spans. ··· ··· ··· { }

Example 12 Let’s construct the matrix P that produces the Jordan form of L in Example 8. Since L has index 3, we row-reduce L2 and find one basic column

T y1 =[6, 6, 0, 0, 6, 6] . − − − 2 Then 2 = y1 contains the basic column of R L ; set i =2. S { }

1. Extend 2 to a basis for R (L) N (L): ¡ ¢ S ∩ (a) Row-reducing, we find that the basic columns of L are its first three columns. Thus we let

112 315− ⎡ 2 10⎤ B = − − . ⎢ 210⎥ ⎢ ⎥ ⎢ 5 3 1 ⎥ ⎢ − − − ⎥ ⎢ 3 2 1 ⎥ ⎢ − − − ⎥ ⎣ ⎦

4 (b) Compute LB and solve LBx =0to obtain a basis for N (LB):

112011 112 633 3151− 13− 315− 6 3 3 ⎡ 2 100−10⎤ ⎡ 2 10⎤ ⎡ −000− − ⎤ LB = − − − − − = ⎢ 210010⎥ ⎢ 210⎥ ⎢ 000⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 5 3 1 1 1 1 ⎥ ⎢ 5 3 1 ⎥ ⎢ 6 3 3 ⎥ ⎢ − − − − − − ⎥ ⎢ − − − ⎥ ⎢ − − − ⎥ ⎢ 3 2 1 101 ⎥ ⎢ 3 2 1 ⎥ ⎢ 6 3 3 ⎥ ⎢ − − − − − ⎥ ⎢ − − − ⎥ ⎢ − − − ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 633 211 6 3 3 000 ⎡ − − − ⎤ ⎡ ⎤ 000row-reduce 000 ⎢ 000⎥ −→ ⎢ 000⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 6 3 3 ⎥ ⎢ 000⎥ ⎢ − − − ⎥ ⎢ ⎥ ⎢ 6 3 3 ⎥ ⎢ 000⎥ ⎢ − − − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 1 1 − − v1 = 2 ,v2 = 0 . ⎧ ⎡ ⎤ ⎡ ⎤⎫ ⎨ 0 2 ⎬ T ⎣ ⎦ ⎣ ⎦T Then Bv1 =[1 100 1 ⎩1] ,Bv2 =[ 572 231]⎭ is a basis for R (L) N (L) . − − − − − ∩ (c) Formn the matrix o

1 615 1 6 0 6 17− 001 ⎡ − − ⎤ ⎡ ⎤ 002row-reduce 000 [y1 Bv1 Bv2]= ; | | ⎢ 002 ⎥ −→ ⎢ 000⎥ ⎢ − ⎥ ⎢ ⎥ ⎢ 6 13⎥ ⎢ 000⎥ ⎢ − − ⎥ ⎢ ⎥ ⎢ 6 11⎥ ⎢ 000⎥ ⎢ − − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ columns 1 and 3 are its basic columns, hence y1,y2 = Bv2 is a basis for R (L) N (L) containing { } ∩ 2. Let S T 1 = [ 572 231] S − − and decrement i; then i =1. n o

0 2. Extend 2 1 = y1,y2 to a basis for R L N (L)=N (L): S ∪ S { } ∩ (a) Since L0 = I, we let B = I. ¡ ¢ (b) Since LB = L, we findabasisforN (LB)=N (L):

2 4 1 112011 100 3 3 3 − − − 4 5 − 2 315113 010 3 3 3 ⎡ − ⎤ ⎡ 1 − 2 2 ⎤ 2 10010row-reduce 001 − − − 3 − 3 3 ⎢ 210010⎥ −→ ⎢ 000000⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 5 3 1 1 1 1 ⎥ ⎢ 000000⎥ ⎢ − − − − − − ⎥ ⎢ ⎥ ⎢ 3 2 1 101 ⎥ ⎢ 000000⎥ ⎢ − − − − − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ 2 4 1 4 −5 2 ⎧ ⎡ −1 ⎤ ⎡ 2 ⎤ ⎡ −2 ⎤⎫ ⎪v1 = − ,v2 = ,v3 = − ⎪ . ⎪ ⎢ 3 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥⎪ ⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎨ ⎢ 0 ⎥ ⎢ 3 ⎥ ⎢ 0 ⎥⎬ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 3 ⎥⎪ ⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ Then a basis for N (L) ⎩⎪is ⎭⎪ Bv1,Bv2,Bv3 = v1,v2,v3 . { } { }

5 (c) Form the matrix 1 3 6 5241 100 4 4 67− 45− 2 010 3 − 3 ⎡ − − − ⎤ ⎡ 2 − 2 ⎤ 02122 row-reduce 001 1 1 [y1 y2 v1 v2 v3]= − − − ; | | | | ⎢ 0 2300⎥ −→ ⎢ 000 0 0⎥ ⎢ − ⎥ ⎢ ⎥ ⎢ 63030⎥ ⎢ 000 0 0⎥ ⎢ − ⎥ ⎢ ⎥ ⎢ 61003⎥ ⎢ 000 0 0⎥ ⎢ − ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ columns 1,2, and 3 are its basic columns, hence y1,y2,v1 is a a basis for N (L) containing { } 2 1. Let S ∪ S T 0 = [2 4 1300] S − − and decrement i; then i =0and the processn terminates havingo produced the basis 2 1 0 for N (L). S ∪ S ∪ S

3. Let 2 = b1 , 1 = b2 , and 0 = b3 .Forj =1, 2, 3, build a Jordan chain on bj i of length S { } S { } S { } i ∈ S 2 i +1by finding a particular solution xj of L x = bj. When j =1we see by inspection that L e1 = b1. Thus 611 630 ⎡ − ⎤ 2 0 20 p1 = L e1 Le1 e1 = − . | | ⎢ 020⎥ ⎢ ⎥ £ ¤ ⎢ 6 50⎥ ⎢ − − ⎥ ⎢ 6 30⎥ ⎢ − − ⎥ When j =2we solve Lx = b2: ⎣ ⎦ 2 4 1 112011 5 100 3 3 3 1 − − | − − 4 5 − 2 | − 315113 7 010 3 3 3 0 ⎡ − | ⎤ ⎡ 1 − 2 2 | ⎤ 2 10010 2 row-reduce 001 2 − − − | 3 − 3 3 | . ⎢ 210010 2 ⎥ −→ ⎢ 000 0 0 0 0 ⎥ ⎢ | − ⎥ ⎢ | ⎥ ⎢ 5 3 1 1 1 1 3 ⎥ ⎢ 000 0 0 0 0 ⎥ ⎢ − − − − − − | ⎥ ⎢ | ⎥ ⎢ 3 2 1 101 1 ⎥ ⎢ 000 0 0 0 0 ⎥ ⎢ − − − − − | ⎥ ⎢ | ⎥ ⎣ T ⎦ ⎣ ⎦ A particular solution is x2 =[ 102000] ; hence − 5 1 −70− ⎡ 22⎤ p2 =[Lx2 x2]= . | ⎢ 20⎥ ⎢ − ⎥ ⎢ 30⎥ ⎢ ⎥ ⎢ 10⎥ ⎢ ⎥ 0 ⎣ 0 ⎦ When j =3we have L = I, and the unique solution of L x = b3 is x = b3 0. Thus the Jordan T ∈ S chain on b3 consists only of b3 and we have p3 =[2 4 1300] . Finally, we form the matrix − − 6115 12 63070− − 4 ⎡ −0 2022−1 ⎤ P =[p1 p2 p3]= − − . | | ⎢ 020203⎥ ⎢ − ⎥ ⎢ 6 50300⎥ ⎢ − − ⎥ ⎢ 6 30100⎥ ⎢ − − ⎥ Then as expected, the JCF of L is ⎣ ⎦ 010000 001000 ⎡ ⎤ 1 000000 J = P − LP = . ⎢ 000010 ⎥ ⎢ ⎥ ⎢ 000000 ⎥ ⎢ ⎥ ⎢ 000000 ⎥ ⎢ ⎥ ⎣ ⎦

6 Exercise 13 A H and a Jordan matrix J appear below. Find an invertible matrix P 1 such that J = P − HP. (Note: Some texts define the JCF with 1’s below the main diagonal as in H.)

0000 0100 1000 0010 H = ; J = . ⎡ 0100⎤ ⎡ 0001⎤ ⎢ 0010⎥ ⎢ 0000⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ Exercise 14 Prove that the Jordan matrices 0100 0100 0010 0010 J = ,J= 1 ⎡ 0001⎤ 2 ⎡ 0000⎤ ⎢ 0000⎥ ⎢ 0000⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ are not similar. (Hint: Show that if P =(pij ) is a 4 4 matrix such that PJ1 = J2P, then P is not invertible.) ×

1 Exercise 15 A 4 4 nilpotent matrix L is given below. Find matrices P and J such that P − LP = J has Jordan form: × 3321 2 1 1 1 L = . ⎡ −1 −101− − ⎤ − ⎢ 5 4 3 2 ⎥ ⎢ − − − − ⎥ ⎣ ⎦ Exercise 16 Consider the 5 5 matrix: × 21201 31311− L = ⎡ 3 1 202− ⎤ . − − − ⎢ 32401 ⎥ ⎢ − ⎥ ⎢ 21201 ⎥ ⎢ − ⎥ ⎣ ⎦ a. Show that L is nilpotent and determine its index of nilpotency. b. Find the Jordan Form J of L.

1 c. Find an invertible matrix P such that J = P − LP.

Exercise 17 Determine the Jordan structure of the following 8 8 nilpotent matrix: × 41301574613 54 39 19 9 6 8 2 4 ⎡ − 9− 6− 212101− − − − − ⎤ ⎢ 6 5 3 21100⎥ L = ⎢ − − − − − ⎥ ⎢ 32 24 13 6 2 5 1 2 ⎥ ⎢ − − − − − − − − ⎥ ⎢ 10 7 203032 ⎥ ⎢ − − − − − ⎥ ⎢ 4 3 2 101 10⎥ ⎢ − − − − − − ⎥ ⎢ 1712632321⎥ ⎢ ⎥ ⎣ ⎦

12-4-08

7