A Note on Nonnegative Diagonally Dominant Matrices Geir Dahl

Total Page:16

File Type:pdf, Size:1020Kb

A Note on Nonnegative Diagonally Dominant Matrices Geir Dahl UNIVERSITY OF OSLO Department of Informatics A note on nonnegative diagonally dominant matrices Geir Dahl Report 269, ISBN 82-7368-211-0 April 1999 A note on nonnegative diagonally dominant matrices ∗ Geir Dahl April 1999 ∗ e make some observations concerning the set C of real nonnegative, W n diagonally dominant matrices of order . This set is a symmetric and n convex cone and we determine its extreme rays. From this we derive ∗ dierent results, e.g., that the rank and the kernel of each matrix A ∈Cn is , and may b e found explicitly. y a certain supp ort graph of determined b A ∗ ver, the set of doubly sto chastic matrices in C is studied. Moreo n Keywords: Diagonal ly dominant matrices, convex cones, graphs and ma- trices. 1 An observation e recall that a real matrix of order is called diagonal ly dominant if W P A n | |≥ | | for . If all these inequalities are strict, is ai,i j=6 i ai,j i =1,...,n A strictly diagonal ly dominant. These matrices arise in many applications as e.g., discretization of partial dierential equations [14] and cubic spline interp ola- [10], and a typical problem is to solve a linear system where tion Ax = b strictly diagonally dominant, see also [13]. Strict diagonal dominance A is is a criterion which is easy to check for nonsingularity, and this is imp ortant for the estimation of eigenvalues confer Ger²chgorin disks, see e.g. [7]. For more ab out diagonally dominant matrices, see [7] or [13]. A matrix is called nonnegative positive if all its elements are nonnegative p ositive. n,n D ⊂ denote the set of all matrices of order that are nonnegative Let n IR n and diagonally dominant. The set of symmetric matrices in y Dn is denoted b ∗ D . Both these sets are p ointed p olyhedral convex cones in the vector space n n,n as wehave IR of real matrices of order n n,n ≤ ≤ Dn={A∈IR : ai,j ≥ 0 for 1 i, j n; P ≥ for } 1 ai,i j=6 i ai,j i =1,...,n , D∗ { ∈D for ≤ ≤ } n = A n : ai,j = aj,i 1 i, j n . ∗ University of Oslo, Dept. of Mathematics and Dept. of Informatics, P.O.Box 1080, Blindern, 0316 Oslo, Norway Email:[email protected] 1 n,n t matrices in is a nonconvex Note that the set of diagonally dominan IR The interior of D consists of the p ositive and strictly diagonally dominant cone. n ∗ , the relativeinterior of D consists of the symmetric, p ositive matrices. Similarly n and strictly diagonally dominant matrices. We mention an interesting result from [9] that is relevantto this note. It ∗ as shown that if ∈D , then is completely p ositive. This means that w A n A A T for some nonnegative × matrix. We return can b e factored as A = BB n m to this result in connection with Theorem 3 b elow. { } b e a set of ≥ vectors in a vector space over the Let S = v1,...,vk k 1 V reals. The nitely generated convex cone Xk { ≥ } cone(S)= λj vj : λ1,...,λk 0 j=1 spanned by . If the vectors are linearly indep endent, is said to b e S v1,...,vk is called a simplex cone. We need a simple result on such cones. cone(S) Let cone be the convex cone spanned by { }⊂ . Lemma 1 (S) S = v1,...,vk V Then cone a simplex cone if and only if each point in cone may be (S) is (S) written uniquely as a conical i.e., nonnegative linear combination of the vectors v1,...,vk. If are linearly indep endent, then the representation is clearly Pro of. v1,...,vk Conversely, assume that the uniqueness of such representations hold and unique.P k 0 . Cho ose nonnegativenumb ers and for that j=1 µj vj = 0 P λj Pλj j =1P,...,k 0 0 h that − for each . Then − . suc µPj = λj λPj j 0 = j µjvj = j λj vj j λj vj 0 0 so by assumption and for all . Therefore j λjvj = j λjvj λj = λj µj =0 j are linearly indep endent. ws that This sho v1,...,vk e call the unique representation of a p oint in a given simplex cone the W v onical representation of . c v n denote the th unit vector in and dene the following matrices of Let ei i IR : order n i T for ; i ∆ = eiei i =1,...,n i,j T for ≤ ≤ ; 2 ii ∆ =(ei+ej)(ei + ej ) 1 i<j n ¯ i,j T for 6 . iii ∆ = ei(ei + ej ) i = j i These are all has a single one which is in p osition . The (0, 1)-matrices. ∆ (i, i) i,j are in p ositions and . Finally, four ones in the matrix ∆ (i, i), (i, j), (j, i) (j, j) ¯ i,j wo ones, in p ositions and . Let S b e the set of matrices in ∆ has t (i, i) (i, j) n ∗ S b e the set of matrices in 2i and ii. Note that 2i and iii, and let n all these matrices are nonnegative, diagonally dominant and have rank one. ∗ ver, the matrices in S are symmetric and p ositive semidenite. Moreo n ∗ ∗ D cone S and D cone S . Moreover, both D and Prop osition 2 n = ( n) n = ( n) n ∗ D are simplex cones. n 2 ∗ Let ∈ cone S so there are nonnegativenumb ers for ≤ and Pro of. A ( n) λi i n ≤ ≤ such that λi,j for 1 i<j n Xn X i i,j (∗) A = λi∆ + λi,j ∆ . i=1 i<j rom this it follows that is symmetric as a linear combination of symmetric F A e. Moreover, ∗ gives for ≤ ≤ matrices and nonnegativ ( ) ai,j = λi,j 1 i<j n i,j has a nonzero in p osition . Moreover, due to the as only the matrix ∆ (i, j) P i,j we also get from ∗ that Pstructure of the matricesP ∆ P ( ) ai,i = λi + j<i λj,i + − . From this we conclude that i<j λi,j = λi + j=6 i ai,j so λi = ai,i j=6 i ai,j ∗ e and diagonally dominant and therefore ∈D . Conversely, A is nonnegativ A n ∗ ∗ ∗ h ∈D may b e written in the form ∗ so we conclude that D cone S . eac A n ( ) n = ( n) ∗ ver, we see that each ∈D has a unique representation as a conical Moreo A n i i,j ∗ bination of the matrices and . So, according to Lemma 1, D is a com ∆ ∆ n The pro of of the results for D is similar. simplex cone. n Related results on generators for certain cones are found in [1]. They study t convex cones asso ciated with diagonally dominant matrices, e.g., the dieren P satisfying ≥ | | so the only complex or real matrices of order n ai,i j=6 i ai,j nonnegativity requirements are on the diagonal elements. Note that the set of these matrices is a convex cone, but not a simplex cone. We hereafter concentrate our study on the symmetric diagonally dominant ∗ D . matrices, i.e., the set n From the previous pro of we see that the conical representation of a symmet- e and diagonally dominant matrix is simply ric, nonnegativ A Xn X X i i,j A = (ai,i − ai,j )∆ + ai,j ∆ . 3 i=1 j=6 i i<j ∗ e dene the support graph of a matrix ∈D as the graph W A n GA =(V,EA) no de set { } and edges i a lo op when Pwith V = v1,...,vn [vi,vi] ai,i > and ii when for ≤ ≤ . j=6 i ai,j for i =1,...,n [vi,vj] ai,j > 0 1 i<j n us, edges of corresp ond to the p ositive co ecients in the conical repre- Th GA tation of . This graph will b e used b elow. sen A E is some nite set, ⊆ and ∈ we use the notation P When E S E x IR x(S):= We also let ∅ . e∈Sxe. x( ):=0 2 Some consequences Wenow lo ok at some consequences of our prop osition. Dimension and faces. An immediate consequence of Prop osition 2 is that 2 ∗ D so it is full-dimensional and D − . dim( n)=n dim( n)=n(n 1)/2 ∗ kernel. In order to study the kernel of matrices in D we need some The n ∗ Consider a matrix ∈D . Let ⊆ b e the con- graph notations. A n C1,...,Ct V nected comp onents of the supp ort graph Wemay assume after reordering GA . 3 ≤ ≤ the subgraph is bipartite and without any lo op. Here that for 1 j p GA[Cj] means that no comp onent is bipartite and without lo ops. 0 ≤ p ≤ t and p =0 + − + − or each ≤ , let and b e the two color classes of . Thus, , F j p Cj Cj Cj Cj Cj + and each edge of joins a no de in andanodein is a partition of Cj GA[Cj ] Cj − Cj n Cj + Let ∈ beavector whose supp ort is , and if ∈ Cj. z IR Cj zi =1 vi Cj Cj − − if ∈ . If the color classes change role, we obtain the nega- and zi = 1 vi Cj Cj eof , but this ambiguity will not matter b elow. Note that we allow the tiv z t to b e trivial, i.e., with a single no de but no lo op, and then comp onen Cj vi Cj z = ei .
Recommended publications
  • Tilburg University on the Matrix
    Tilburg University On the Matrix (I + X)-1 Engwerda, J.C. Publication date: 2005 Link to publication in Tilburg University Research Portal Citation for published version (APA): Engwerda, J. C. (2005). On the Matrix (I + X)-1. (CentER Discussion Paper; Vol. 2005-120). Macroeconomics. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. sep. 2021 No. 2005–120 -1 ON THE MATRIX INEQUALITY ( I + x ) I . By Jacob Engwerda November 2005 ISSN 0924-7815 On the matrix inequality (I + X)−1 ≤ I. Jacob Engwerda Tilburg University Dept. of Econometrics and O.R. P.O. Box: 90153, 5000 LE Tilburg, The Netherlands e-mail: [email protected] November, 2005 1 Abstract: In this note we consider the question under which conditions all entries of the matrix I −(I +X)−1 are nonnegative in case matrix X is a real positive definite matrix.
    [Show full text]
  • Triangular Factorization
    Chapter 1 Triangular Factorization This chapter deals with the factorization of arbitrary matrices into products of triangular matrices. Since the solution of a linear n n system can be easily obtained once the matrix is factored into the product× of triangular matrices, we will concentrate on the factorization of square matrices. Specifically, we will show that an arbitrary n n matrix A has the factorization P A = LU where P is an n n permutation matrix,× L is an n n unit lower triangular matrix, and U is an n ×n upper triangular matrix. In connection× with this factorization we will discuss pivoting,× i.e., row interchange, strategies. We will also explore circumstances for which A may be factored in the forms A = LU or A = LLT . Our results for a square system will be given for a matrix with real elements but can easily be generalized for complex matrices. The corresponding results for a general m n matrix will be accumulated in Section 1.4. In the general case an arbitrary m× n matrix A has the factorization P A = LU where P is an m m permutation× matrix, L is an m m unit lower triangular matrix, and U is an×m n matrix having row echelon structure.× × 1.1 Permutation matrices and Gauss transformations We begin by defining permutation matrices and examining the effect of premulti- plying or postmultiplying a given matrix by such matrices. We then define Gauss transformations and show how they can be used to introduce zeros into a vector. Definition 1.1 An m m permutation matrix is a matrix whose columns con- sist of a rearrangement of× the m unit vectors e(j), j = 1,...,m, in RI m, i.e., a rearrangement of the columns (or rows) of the m m identity matrix.
    [Show full text]
  • Row Echelon Form Matlab
    Row Echelon Form Matlab Lightless and refrigerative Klaus always seal disorderly and interknitting his coati. Telegraphic and crooked Ozzie always kaolinizing tenably and bell his cicatricles. Hateful Shepperd amalgamating, his decors mistiming purifies eximiously. The row echelon form of columns are both stored as One elementary transformations which matlab supports both above are equivalent, row echelon form may instead be used here we also stops all. Learn how we need your given value as nonzero column, row echelon form matlab commands that form, there are called parametric surfaces intersecting in matlab file make this? This article helpful in row echelon form matlab. There has multiple of satisfy all row echelon form matlab. Let be defined by translating from a sum each variable becomes a matrix is there must have already? We drop now vary the Second Derivative Test to determine the type in each critical point of f found above. Matrices in Matlab Arizona Math. The floating point, not change ababaarimes indicate that are displayed, and matrices with row operations for two general solution is a matrix is a line. The matlab will sum or graphing calculators for row echelon form matlab has nontrivial solution as a way: form for each componentwise operation or column echelon form. For accurate part, not sure to explictly give to appropriate was of equations as a comment before entering the appropriate matrices into MATLAB. If necessary, interchange rows to leaving this entry into the first position. But you with matlab do i mean a row echelon form matlab works by spaces and matrices, or multiply matrices.
    [Show full text]
  • Linear Algebra and Matrix Theory
    Linear Algebra and Matrix Theory Chapter 1 - Linear Systems, Matrices and Determinants This is a very brief outline of some basic definitions and theorems of linear algebra. We will assume that you know elementary facts such as how to add two matrices, how to multiply a matrix by a number, how to multiply two matrices, what an identity matrix is, and what a solution of a linear system of equations is. Hardly any of the theorems will be proved. More complete treatments may be found in the following references. 1. References (1) S. Friedberg, A. Insel and L. Spence, Linear Algebra, Prentice-Hall. (2) M. Golubitsky and M. Dellnitz, Linear Algebra and Differential Equa- tions Using Matlab, Brooks-Cole. (3) K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall. (4) P. Lancaster and M. Tismenetsky, The Theory of Matrices, Aca- demic Press. 1 2 2. Linear Systems of Equations and Gaussian Elimination The solutions, if any, of a linear system of equations (2.1) a11x1 + a12x2 + ··· + a1nxn = b1 a21x1 + a22x2 + ··· + a2nxn = b2 . am1x1 + am2x2 + ··· + amnxn = bm may be found by Gaussian elimination. The permitted steps are as follows. (1) Both sides of any equation may be multiplied by the same nonzero constant. (2) Any two equations may be interchanged. (3) Any multiple of one equation may be added to another equation. Instead of working with the symbols for the variables (the xi), it is eas- ier to place the coefficients (the aij) and the forcing terms (the bi) in a rectangular array called the augmented matrix of the system. a11 a12 .
    [Show full text]
  • Arxiv:1909.13402V1 [Math.CA] 30 Sep 2019 Routh-Hurwitz Array [14], Argument Principle [23] and So On
    ON GENERALIZATION OF CLASSICAL HURWITZ STABILITY CRITERIA FOR MATRIX POLYNOMIALS XUZHOU ZHAN AND ALEXANDER DYACHENKO Abstract. In this paper, we associate a class of Hurwitz matrix polynomi- als with Stieltjes positive definite matrix sequences. This connection leads to an extension of two classical criteria of Hurwitz stability for real polynomials to matrix polynomials: tests for Hurwitz stability via positive definiteness of block-Hankel matrices built from matricial Markov parameters and via matricial Stieltjes continued fractions. We obtain further conditions for Hurwitz stability in terms of block-Hankel minors and quasiminors, which may be viewed as a weak version of the total positivity criterion. Keywords: Hurwitz stability, matrix polynomials, total positivity, Markov parameters, Hankel matrices, Stieltjes positive definite sequences, quasiminors 1. Introduction Consider a high-order differential system (n) (n−1) A0y (t) + A1y (t) + ··· + Any(t) = u(t); where A0;:::;An are complex matrices, y(t) is the output vector and u(t) denotes the control input vector. The asymptotic stability of such a system is determined by the Hurwitz stability of its characteristic matrix polynomial n n−1 F (z) = A0z + A1z + ··· + An; or to say, by that all roots of det F (z) lie in the open left half-plane <z < 0. Many algebraic techniques are developed for testing the Hurwitz stability of matrix polynomials, which allow to avoid computing the determinant and zeros: LMI approach [20, 21, 27, 28], the Anderson-Jury Bezoutian [29, 30], matrix Cauchy indices [6], lossless positive real property [4], block Hurwitz matrix [25], extended arXiv:1909.13402v1 [math.CA] 30 Sep 2019 Routh-Hurwitz array [14], argument principle [23] and so on.
    [Show full text]
  • Solutions Linear Algebra: Gradescope Problem Set 3 (1) Suppose a Has 4
    Solutions Linear Algebra: Gradescope Problem Set 3 (1) Suppose A has 4 rows and 3 columns, and suppose b 2 R4. If Ax = b has exactly one solution, what can you say about the reduced row echelon form of A? Explain. Solution: If Ax = b has exactly one solution, there cannot be any free variables in this system. Since free variables correspond to non-pivot columns in the reduced row echelon form of A, we deduce that every column is a pivot column. Thus the reduced row echelon form must be 0 1 1 0 0 B C B0 1 0C @0 0 1A 0 0 0 (2) Indicate whether each statement is true or false. If it is false, give a counterexample. (a) The vector b is a linear combination of the columns of A if and only if Ax = b has at least one solution. (b) The equation Ax = b is consistent only if the augmented matrix [A j b] has a pivot position in each row. (c) If matrices A and B are row equvalent m × n matrices and b 2 Rm, then the equations Ax = b and Bx = b have the same solution set. (d) If A is an m × n matrix whose columns do not span Rm, then the equation Ax = b is inconsistent for some b 2 Rm. Solution: (a) True, as Ax can be expressed as a linear combination of the columns of A via the coefficients in x. (b) Not necessarily. Suppose A is the zero matrix and b is the zero vector.
    [Show full text]
  • Conditioning Analysis of Positive Definite Matrices by Approximate Factorizations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 26 (1989) 257-269 257 North-Holland Conditioning analysis of positive definite matrices by approximate factorizations Robert BEAUWENS Service de M&rologie NucGaire, UniversitP Libre de Bruxelles, 50 au. F.D. Roosevelt, 1050 Brussels, Belgium Renaud WILMET The Johns Hopkins University, Baltimore, MD 21218, U.S.A Received 19 February 1988 Revised 7 December 1988 Abstract: The conditioning analysis of positive definite matrices by approximate LU factorizations is usually reduced to that of Stieltjes matrices (or even to more specific classes of matrices) by means of perturbation arguments like spectral equivalence. We show in the present work that a wider class, which we call “almost Stieltjes” matrices, can be used as reference class and that it has decisive advantages for the conditioning analysis of finite element approxima- tions of large multidimensional steady-state diffusion problems. Keywords: Iterative analysis, preconditioning, approximate factorizations, solution of finite element approximations to partial differential equations. 1. Introduction The conditioning analysis of positive definite matrices by approximate factorizations has been the subject of a geometrical approach by Axelsson and his coworkers [1,2,7,8] and of an algebraic approach by one of the authors [3-51. In both approaches, the main role is played by Stieltjes matrices to which other cases are reduced by means of spectral equivalence or by a similar perturbation argument. In applications to discrete partial differential equations, such arguments lead to asymptotic estimates which may be quite poor in nonasymptotic regions, a typical instance in large engineering multidimensional steady-state diffusion applications, as illustrated below.
    [Show full text]
  • Block Matrices in Linear Algebra
    PRIMUS Problems, Resources, and Issues in Mathematics Undergraduate Studies ISSN: 1051-1970 (Print) 1935-4053 (Online) Journal homepage: https://www.tandfonline.com/loi/upri20 Block Matrices in Linear Algebra Stephan Ramon Garcia & Roger A. Horn To cite this article: Stephan Ramon Garcia & Roger A. Horn (2020) Block Matrices in Linear Algebra, PRIMUS, 30:3, 285-306, DOI: 10.1080/10511970.2019.1567214 To link to this article: https://doi.org/10.1080/10511970.2019.1567214 Accepted author version posted online: 05 Feb 2019. Published online: 13 May 2019. Submit your article to this journal Article views: 86 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=upri20 PRIMUS, 30(3): 285–306, 2020 Copyright # Taylor & Francis Group, LLC ISSN: 1051-1970 print / 1935-4053 online DOI: 10.1080/10511970.2019.1567214 Block Matrices in Linear Algebra Stephan Ramon Garcia and Roger A. Horn Abstract: Linear algebra is best done with block matrices. As evidence in sup- port of this thesis, we present numerous examples suitable for classroom presentation. Keywords: Matrix, matrix multiplication, block matrix, Kronecker product, rank, eigenvalues 1. INTRODUCTION This paper is addressed to instructors of a first course in linear algebra, who need not be specialists in the field. We aim to convince the reader that linear algebra is best done with block matrices. In particular, flexible thinking about the process of matrix multiplication can reveal concise proofs of important theorems and expose new results. Viewing linear algebra from a block-matrix perspective gives an instructor access to use- ful techniques, exercises, and examples.
    [Show full text]
  • Linear Algebra Review
    Linear Algebra Review Kaiyu Zheng October 2017 Linear algebra is fundamental for many areas in computer science. This document aims at providing a reference (mostly for myself) when I need to remember some concepts or examples. Instead of a collection of facts as the Matrix Cookbook, this document is more gentle like a tutorial. Most of the content come from my notes while taking the undergraduate linear algebra course (Math 308) at the University of Washington. Contents on more advanced topics are collected from reading different sources on the Internet. Contents 3.8 Exponential and 7 Special Matrices 19 Logarithm...... 11 7.1 Block Matrix.... 19 1 Linear System of Equa- 3.9 Conversion Be- 7.2 Orthogonal..... 20 tions2 tween Matrix Nota- 7.3 Diagonal....... 20 tion and Summation 12 7.4 Diagonalizable... 20 2 Vectors3 7.5 Symmetric...... 21 2.1 Linear independence5 4 Vector Spaces 13 7.6 Positive-Definite.. 21 2.2 Linear dependence.5 4.1 Determinant..... 13 7.7 Singular Value De- 2.3 Linear transforma- 4.2 Kernel........ 15 composition..... 22 tion.........5 4.3 Basis......... 15 7.8 Similar........ 22 7.9 Jordan Normal Form 23 4.4 Change of Basis... 16 3 Matrix Algebra6 7.10 Hermitian...... 23 4.5 Dimension, Row & 7.11 Discrete Fourier 3.1 Addition.......6 Column Space, and Transform...... 24 3.2 Scalar Multiplication6 Rank......... 17 3.3 Matrix Multiplication6 8 Matrix Calculus 24 3.4 Transpose......8 5 Eigen 17 8.1 Differentiation... 24 3.4.1 Conjugate 5.1 Multiplicity of 8.2 Jacobian......
    [Show full text]
  • What Is on Today 1 Row Reduction and Echelon Forms
    MA 242 (Linear Algebra) Lecture 2: January 23, 2018 Section B1 Professor Jennifer Balakrishnan, [email protected] What is on today 1 Row reduction and echelon forms1 1 Row reduction and echelon forms Lay{Lay{McDonald x1:2 pp. 12 { 24 Today we will refine the method introduced in the previous class into a row reduction algo- rithm that will allow us to analyze any system of linear equations. In the definitions that follow, a nonzero row or nonzero column in a matrix means a row or column that has at least one nonzero entry. A leading entry of a row refers to the leftmost nonzero entry in a nonzero row. A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it. 3. All entries in a column below a leading entry are zeros. If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form or reduced row echelon form: 4. The leading entry in each nonzero row is 1. 5. Each leading 1 is the only nonzero entry in its column. An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon form (respectively, reduced echelon form). Example 1 The following matrix is in echelon form. The leading entries () may have any nonzero value. The starred entries (*) may have any value (including zero): 2 3 ∗ ∗ ∗ 6 0 ∗ ∗7 6 7 4 0 0 0 05 0 0 0 0 1 MA 242 (Linear Algebra) Lecture 2: January 23, 2018 Section B1 Property 2 above says that the leading entries form an echelon (\steplike") pattern that moves down and to the right through the matrix.
    [Show full text]
  • Lecture 12 Elementary Matrices and Finding Inverses
    Mathematics 13: Lecture 12 Elementary Matrices and Finding Inverses Dan Sloughter Furman University January 30, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 12 January 30, 2008 1 / 24 I A is invertible. I The only solution to A~x = ~0 is the trivial solution ~x = ~0. I The reduced row-echelon form of A is In. ~ ~ n I A~x = b has a solution for b in R . I There exists an n × n matrix C for which AC = In. Result from previous lecture I The following statements are equivalent for an n × n matrix A: Dan Sloughter (Furman University) Mathematics 13: Lecture 12 January 30, 2008 2 / 24 I The only solution to A~x = ~0 is the trivial solution ~x = ~0. I The reduced row-echelon form of A is In. ~ ~ n I A~x = b has a solution for b in R . I There exists an n × n matrix C for which AC = In. Result from previous lecture I The following statements are equivalent for an n × n matrix A: I A is invertible. Dan Sloughter (Furman University) Mathematics 13: Lecture 12 January 30, 2008 2 / 24 I The reduced row-echelon form of A is In. ~ ~ n I A~x = b has a solution for b in R . I There exists an n × n matrix C for which AC = In. Result from previous lecture I The following statements are equivalent for an n × n matrix A: I A is invertible. I The only solution to A~x = ~0 is the trivial solution ~x = ~0. Dan Sloughter (Furman University) Mathematics 13: Lecture 12 January 30, 2008 2 / 24 ~ ~ n I A~x = b has a solution for b in R .
    [Show full text]
  • Similarities on Graphs: Kernels Versus Proximity Measures1
    Similarities on Graphs: Kernels versus Proximity Measures1 Konstantin Avrachenkova, Pavel Chebotarevb,∗, Dmytro Rubanova aInria Sophia Antipolis, France bTrapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Russia Abstract We analytically study proximity and distance properties of various kernels and similarity measures on graphs. This helps to understand the mathemat- ical nature of such measures and can potentially be useful for recommending the adoption of specific similarity measures in data analysis. 1. Introduction Until the 1960s, mathematicians studied only one distance for graph ver- tices, the shortest path distance [6]. In 1967, Gerald Sharpe proposed the electric distance [42]; then it was rediscovered several times. For some col- lection of graph distances, we refer to [19, Chapter 15]. Distances2 are treated as dissimilarity measures. In contrast, similarity measures are maximized when every distance is equal to zero, i.e., when two arguments of the function coincide. At the same time, there is a close relation between distances and certain classes of similarity measures. One of such classes consists of functions defined with the help of kernels on graphs, i.e., positive semidefinite matrices with indices corresponding to the nodes. Every kernel is the Gram matrix of some set of vectors in a Euclidean space, and Schoenberg’s theorem [39, 40] shows how it can be transformed into the matrix of Euclidean distances between these vectors. arXiv:1802.06284v1 [math.CO] 17 Feb 2018 Another class consists of proximity measures characterized by the trian- gle inequality for proximities. Every proximity measure κ(x, y) generates a ∗Corresponding author Email addresses: [email protected] (Konstantin Avrachenkov), [email protected] (Pavel Chebotarev), [email protected] (Dmytro Rubanov) 1This is the authors’ version of a work that was submitted to Elsevier.
    [Show full text]