Marine Species Identification Manual for Horizontal Longline

Total Page:16

File Type:pdf, Size:1020Kb

Marine Species Identification Manual for Horizontal Longline Other fish species Autres espèces de poissons First dorsal fin Second dorsal fin 54 Première nageoire dorsale Deuxième nageoire dorsale Dorsal spines Other fish species Épines dorsales Finlets Pinnules Caudal keel Carène caudale Teeth Autres espèces Dents Caudal fin de poissons Nageoire caudale Operculum (gill cover) Opercule branchial Lateral line Supplementary Anal fin Ligne latérale caudal keel Pelvic fin Nageoire anale Carène caudale Nageoire pelvienne supplémentaire Pectoral fin Position of anus Nageoire pectorale Position de l’anus Scientific English French FAO code Page Acanthocybium solandri Wahoo Thazard-bâtard WAH 56 Scomberomorus commerson Narrow-barred Spanish mackerel Thazard rayé indo-pacifique COM 57 Taractichthys steindachneri Sickle pomfret Castagnole fauchoir, Brème noire TST 58 Eumegistus illustris Brilliant pomfret, Lustrous pomfret Brème noire brillante EBS 59 Brama brama Atlantic pomfret, Ray's bream Grande castagnole POA 60 Bramidae (other) Other pomfrets and fanfishes Autres Bramidae BRZ 61 Lampris guttatus Opah, Moonfish Opah, Lampris LAG 62 Ranzania laevis Slender sunfish Ranzania RZV 63 Masturus lanceolatus Sharptail mola, Sharptail sunfish Poisson-lune à queue pointue MRW 64 Mola mola Ocean sunfish Poisson-lune MOX 65 Coryphaena hippurus Common dolphinfish, Mahi mahi Coryphène commune, Mahi mahi DOL 66 Cubiceps gracilis Driftfish Dérivant CBG 67 Lepidocybium flavobrunneum Escolar Escolier noir LEC 68 Ruvettus pretiosus Oilfish Rouvet OIL 69 Promethichthys prometheus Roudi escolar, Snake mackerel Escolier clair PRP 70 Gempylus serpens Snake mackerel Escolier serpent GES 71 Thyrsites atun Snoek, Barracouta Escolier SNK 72 Nesiarchus nasutus Black gemfish Escolier long-nez NEN 73 Rexea solandri Silver gemfish Escolier tifiati GEM 74 Gempylidae (other) Other gemfish and snake mackerels Autres Gempylidae GEP 75 Alepisaurus brevirostris Short snouted (shortnose) lancetfish Lancier à nez court ALO 76 Alepisaurus ferox Long snouted (longnose) lancetfish Lancier long-nez ALX 77 Omosudis lowei Omosudid, Hammerjaw Omosudide OMW 78 Sphyraena barracuda Great barracuda Barracuda GBA 79 Sphyraena jello Pickhandle barracuda Bécune jello BAC 80 Sphyraena qenie Blackfin barracuda Barracuda à queue noire BAB 81 Lagocephalus lagocephalus Rabbit puffer, Oceanic puffer Compère lièvre LGH 82 Grammistes sexlineatus Goldenstriped soapfish, Sixline soapfish Savon rayé d'or GSE 83 Elagatis bipinnulata Rainbow runner Comète saumon RRU 84 Seriola lalandi Yellowtail amberjack Sériole chinchard YTC 85 Scombrolabrax heterolepis Longfin escolar, Black mackerel Escolier aile longue SXH 86 Dasyatis violacea Pelagic stingray Pastenague violette PLS 87 Manta birostris Giant manta Mante géante RMB 88 Mobula spp. Other manta rays and devil rays Diables de mer MNT 89 Lophotus capellei Unicornfish Lophote chevelu LOP 90 Lophotus lacepede Crested oarfish, Crestfish Lophote à crête LLL 91 Assurger anzac Razorback scabbardfish Poisson sabre rasoir ASZ 92 Trichiuridae (other) Other scabbardfishes, hairtails, Autres poissons sabres frostfishes CUT 93 Trachipteridae Ribbonfish and Dealfish Poissons-rubans TRX 94 Regalecidae Oarfish Régalecs RRG 95 55 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 56 Acanthocybium solandri WAH Rest of head Partie arrire de la tte English: Wahoo Snout French: Thazard-btard Museau Japanese: Kamasu-sawara Hawaiian: Ono Local: Snout as long as rest of head Museau de mme taille que la partie arrire de la tte Lateral line dips under first dorsal fin Ligne latrale plongeant sous la premire nageoire dorsale Scomberomorus commerson COM Rest of head Partie arrire de la tte English: Narrow-barred Spanish mackerel Snout Museau French: Thazard ray indo-pacifique Japanese: Yokoshima-sawara Local: Snout shorter than rest of head Museau plus court que la partie arrire de la tte Lateral line dips after first dorsal fin Ligne latrale plongeant en arrire de la premire nageoire dorsale 57 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 58 Taractichthys steindachneri TST Obviously long first dorsal and anal fins Premire nageoire dorsale English: Sickle pomfret et nageoire anale manifestement longues French: Castagnole fauchoir, Brme noire Japanese: Hirejiro-manzai-uo White margin on caudal fin Hawaiian: Monchong, Bordure blanche Pomfret sur la nageoire Ventral ridge caudale Local: Ride ventrale Large scales Interpelvic area rounded Grandes cailles Espace arrondi entre les nageoires pelviennes Anus Anus Eumegistus illustris EBS Juvenile (to 30 cm) Juvnile (jusqu' 30 cm) Adult Adulte Large scales Grandes cailles English: Brilliant pomfret, Lustrous pomfret French: Brme noire Distinct shape to brillante caudal fin Nageoire caudale de Japanese: Chikame-echiopia forme particulire Hawaiian: Monchong, Ventral ridge Pomfret Ride ventrale Local: Interpelvic area flat White tips on caudal fin Espace plat entre Pointes blanches sur la nageoire caudale les nageoires pelviennes Anus Anus 59 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 60 Brama brama POA English: Atlantic pomfret, Small scales RayÕs bream Petites cailles French: Grande castagnole Japanese: Echiopia, Head obviously arched Tte clairement Shimagatsuo de forme arque Local: First few rays of anal fin forming a well-developed lobe (except in small juveniles) Les premiers rayons de la nageoire anale forment un lobe bien dvelopp (sauf chez les petits juvniles) Bramidae (other) BRZ Species in this family have: • Angle of jaw very slanted • Single dorsal fin • Caudal fin of adults strongly forked Caractristiques des espces de cette famille : • Angle trs prononc de la mchoire • Une seule nageoire dorsale Pteraclis spp. Pterycombus spp. • Nageoire caudale des adultes trs fourchue English: Other pomfrets and fanfishes French: Autres Bramidae Japanese: Shima-gatuo Hawaiian: Monchong Local: Taractes spp. Brama spp. 61 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 62 Lampris guttatus LAG Distinct body shape, colour and markings Forme, couleur et marques du corps caractristiques English: Opah, Moonfish French: Opah, Lampris Japanese: Akamanbo, Mandai Hawaiian: Opah, Moonfish Manendai Local: Long pelvic fin Longue nageoire pelvienne Ranzania laevis RZV Distinct markings Marques caractristiques Slender body shape Forme mince du corps English: Slender sunfish French: Ranzania Japanese: Kusabifugu Hawaiian: Slender mola, Ranzania Local: No protruding ÒtailÓ Pas de ÒqueueÓ prominente Maximum length: 80 cm Taille maximum : 80 cm 63 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 64 Masturus lanceolatus MRW Protruding ÒtailÓ ÒQueueÓ prominente English: Sharptail mola, Sharptail sunfish French: Poisson-lune queue pointue Japanese: Yarimanbo Hawaiian: Mola, Sunfish Local: Mola mola MOX No protruding ÒtailÓ Pas de ÒqueueÓ prominente English: Ocean sunfish French: Poisson-lune Japanese: Manbo Hawaiian: Mola mola, Makua, Sunfish Local: Oval body shape Corps de forme ovale 65 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 66 Coryphaena hippurus DOL Distinct body shape and colour Forme du corps et couleur caractristiques English: Common dolphinfish, Mahi mahi French: Coryphne commune, Mahi mahi Japanese: Shiira, Toohyaku Hawaiian: Mahimahi, Oma, Lapa Male Mle Local: Female Femelle Cubiceps gracilis CBG Well defined scales Large pectoral fin cailles bien dfinies English: Driftfish Grande nageoire pectorale French: Drivant Japanese: Boozukonnyaku-zoku Local: Maximum length: 107 cm Taille maximum : 107 cm 67 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 68 Lepidocybium flavobrunneum LEC Wavy lateral line, may be faded Smooth skin English: Escolar Ligne latrale sinueuse, parfois dcolore Peau lisse French: Escolier noir Japanese: Aburasokomutsu Main caudal keel with two smaller Hawaiian: Smooth-skin walu, supplementary keels Hawaiian butterfish Carne caudale principale, Local: avec deux carnes supplmentaires, plus petites Four or more finlets Quatre pinnules ou plus Ruvettus pretiosus OIL Lateral line relatively straight from caudal fin to pectoral fin Ligne latrale relativement droite depuis la nageoire caudale English: Oilfish jusquÕ la nageoire pectorale Very rough skin French: Rouvet Peau trs rugueuse Japanese: Baramutsu Hawaiian: Walu, Rough walu, Hawaiian butterfish Local: Two anal finlets Sharp scaly keel Deux pinnules anales Carne cailles coupantes 69 Other fish species Autres espèces de poissons Other fish species Autres espèces de poissons 70 Promethichthys prometheus PRP English: Roudi escolar, Snake mackerel French: Escolier clair Japanese: Kuroshibikamasu Hawaiian: Snake mackerel Local: Small pelvic fin, represented by a single very small spine and soft ray Single lateral line Petite nageoire pelvienne, reprsente Ligne latrale unique par une seule pine trs petite et un rayon mou Gempylus serpens GES First dorsal fin very long, second dorsal fin short and followed by five or six finlets Premire nageoire dorsale trs longue, deuxime nageoire dorsale courte, suivie de cinq ou six pinnules English: Snake mackerel French: Escolier serpent Japanese: Kurotachikamasu Hawaiian: Snake mackerel Local: Two distinct lateral lines Very small pelvic fin Deux lignes latrales caractristiques Trs petite nageoire pelvienne Body very long and skinny Corps trs allong et troit 71 Other fish species Autres
Recommended publications
  • Studies on Some Japanese Fishes of The, Family Gempylidae
    Studies on Some Japanese Fishes of the, Family Gempylidae KIYOMATSU M ATSUBARA and TAMOTSU IWAI l THOUGH TH E FISHES of the family Gempyli­ The few species comprising this family live dae have long been of interest to ichth yolo­ in the high seas and are widely distributed in gists and though considerable literature warm regions throughout the world . concerning this family has accumulated; the The measurements of various parts of the group still is far from being satisfactorily body were made in the same way as those understood. made by the senior author in his study on the Since the publication of " Gempylidae of scorpaenoid fishes ofJapan (Matsubara, 1943: Japan" by Dr. Toshij i Kamohara in 1938, 6-7). We have carefully observed the gill some additional facts have come to ligh t, and rakers stained by alizarin red and cleared by several discrepancies have been found to exist potassium hydroxide. between his descriptions and our specimens. Acknowledgments: .We wish to express our The present paper, supplementing Karno­ sincere gratitude to Mr. Vernon E. Brock, hara's, treats seven species of the family, re­ Dr. Carl L. Hubbs, Mr. T. Abe, Dr. T. Karno­ ferred to the genera N eoepinnul«, Bpinnula, hara, and Mr. M. Nakamura, all of whom Mimasea, Gempylus, Rexea, Nealotus, and helped us in various ways. We are also greatly Prometbicbtbys. The specimens thus far ex­ indebted to Messrs. G . Abe and S. Noda for amined were all taken by deep-sea trawlers assistance in 'obtaining material. Expenses for off the Pacific coast of J apan at a depth of investigations of deep-sea fishes were de­ about 100 fathoms, and all are depo sited in frayed from 1943 to 1945 by a research fun d the Department of Fisheries, Facult y of Agri- .
    [Show full text]
  • Simulations of Fishing Effects on the Southern Benguela Fish Community Using an Individual-Based Model: Learning from a Comparison with Ecosim
    Ecosystem Approaches to Fisheries in the Southern Benguela Afr. J. mar. Sci. 26: 95–114 2004 95 SIMULATIONS OF FISHING EFFECTS ON THE SOUTHERN BENGUELA FISH COMMUNITY USING AN INDIVIDUAL-BASED MODEL: LEARNING FROM A COMPARISON WITH ECOSIM Y-J. SHIN*, L. J. SHANNON† and P. M. CURY* By applying an individual-based model (OSMOSE) to the southern Benguela ecosystem, a multispecies analysis is proposed, complementary to that provided by the application of ECOPATH/ECOSIM models. To reconstruct marine foodwebs, OSMOSE is based on the hypothesis that predation is a size-structured process. In all, 12 fish species, chosen for their importance in terms of biomass and catches, are explicitly modelled. Growth, repro- duction and mortality parameters are required to model their dynamics and trophic interactions. Maps of mean spatial distribution of the species are compiled from published literature. Taking into account the spatial component is necessary because spatial co-occurrence determines potential interactions between predatory fish and prey fish of suitable size. To explore ecosystem effects of fishing, different fishing scenarios, previously examined using ECOSIM, are simulated using the OSMOSE model. They explore the effects of targeting fish species in the southern Benguela considered to be predators (Cape hake Merluccius capensis and M. paradoxus) or prey (anchovy Engraulis encrasicolus, sardine Sardinops sagax, round herring Etrumeus whiteheadi). Simulation results are compared and are generally consistent with those obtained using an ECOSIM model. This cross-validation appears to be a promising means of evaluating the robustness of model outputs, when separate validation of marine ecosystem models are still difficult to perform.
    [Show full text]
  • IOTC–2013–WPEB09–42 Self-Reporting Data Collection
    IOTC–2013–WPEB09–42 Self-reporting data collection project for the pelagic longline fishery based in La Reunion P. Bach(1), S. Sabarros(2), L. Le Foulgoc(3), E. Richard(3), J.-P. Lamoureux(2), E. Romanov(3) (1) IRD, UMR 212 EME „Ecosystèmes Marins Exploités‟, Centre de Recherche Halieutique Méditerranéenne et Tropicale Avenue Jean Monnet, BP 171, 34203 Sète Cedex, France. (2) IRD, UMR 212 EME „Ecosystèmes Marins Exploités‟, IRD Office, Quai d'Amsterdam, Port Ouest, 97420Le Port, La Réunion, France. (3) CAP RUN – ARDA, Magasin n°10 – Port Ouest, 97420 Le Port, Ile de la Réunion, France. * Corresponding author, email: [email protected] Abstract Overexploitation of target and bycatch species in marine capture fisheries is the most widespread and direct driver of degradation of marine communities and loss of global marine biodiversity. Logbook data in general covered only the part of the catch landed to be commercialized. Observer programs can be difficult to implement depending on the size of fishing boats and present several constraints leading to inferences biases. In this context, IRD with the cooperation of the CAP RUN launched in 2011, a self-reporting of exhaustive catch and effort data for the pelagic longline fishery based in Reunion Island. The aim of this project is to increase the coverage level of the fishing activity of all longliners of the fleet in terms of fishing effort and spatial distribution. The project is undertaken with the financial support of the “Data Collection Framework” program of the European Union. It is based on financial motivations of collaborative fishermen.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • The First Registration of Oilfish Ruvettus Pretiosus (Cocco, 1833) in the Waters of the Albanian Coast of the Adriatic Sea; Morphometry
    06 | Fisheries, Game Management and Beekeeping PRELIMINARY COMMUNICATION The first registration of oilfish Ruvettus pretiosus (Cocco, 1833) in the waters of the Albanian coast of the Adriatic Sea; morphometry Dritan Arapi1, Rigerta Sadikaj2,Vladimir Spaho3 1Flora and Fauna Research Center, University of Tirana, Tirana, Albania ([email protected]) 2Faculty of Natural Sciences, University of Tirana, Tirana, Albania 3Agricultural University, Tirana, Albania Abstract In February 2017, it was recorded for the first time the presence of the fish “oilfish” (Ruvettus pretiosus Cocco,1833) in the waters of the Albanian coast of the Adriatic Sea, near Karaburun peninsula. This alien fish was caught as by-catch during fishing with hooks (longline fishing) which is carried out for large pelagics. Its overall live weight was W=26.1 kg while the values for some morphometric indicators were TL=173.5 cm; FL=155 cm, SL=146cm and cf=40.2 cm. The caught specimen was donated to the Museum of Natural Sciences at the University of Tirana. Key words: oilfish, morphometry, Adriatic Sea, Albania, alien species Introduction Alien invasive species (IAS) are considered as a major threat to global diversity (Bax et al. 2003.). In the recent years, in the scientific literature have apparently increased the reports on the involvement of alien species, originating from temperate and tropical climate, in the ictic fauna of the Mediterranean basin. Alien or non-native fish have been introduced in the Mediterranean and Black Sea Basins through the Suez Canal, the Gibraltar Strait and the ballast water. The opening of Suez Canal, climate changes and the intensification of international shipping activities are factors that have favored an increase in the number of alien species.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Morphology and Phylogenetic Relationships of Fossil Snake Mackerels and Cutlassfishes (Trichiuroidea) from the Eocene (Ypresian) London Clay Formation
    MS. HERMIONE BECKETT (Orcid ID : 0000-0003-4475-021X) DR. ZERINA JOHANSON (Orcid ID : 0000-0002-8444-6776) Article type : Original Article Handling Editor: Lionel Cavin Running head: Relationships of London Clay trichiuroids Hermione Becketta,b, Sam Gilesa, Zerina Johansonb and Matt Friedmana,c aDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK bDepartment of Earth Sciences, Natural History Museum, London, SW7 5BD, UK cCurrent address: Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA *Correspondence to: Hermione Beckett, +44 (0) 1865 272000 [email protected], Department of Earth Sciences, University of Oxford, Oxford, UK, OX1 3AN Short title: Relationships of London Clay trichiuroids Author Manuscript Key words: Trichiuroidea, morphology, London Clay, Trichiuridae, Gempylidae, fossil This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/spp2.1221 This article is protected by copyright. All rights reserved A ‘Gempylids’ (snake mackerels) and trichiurids (cutlassfishes) are pelagic fishes characterised by slender to eel-like bodies, deep-sea predatory ecologies, and large fang-like teeth. Several hypotheses of relationships between these groups have been proposed, but a consensus remains elusive. Fossils attributed to ‘gempylids’ and trichiurids consist almost exclusively of highly compressed body fossils and isolated teeth and otoliths. We use micro-computed tomography to redescribe two three- dimensional crania, historically assigned to †Eutrichiurides winkleri and †Progempylus edwardsi, as well as an isolated braincase (NHMUK PV OR 41318).
    [Show full text]
  • 6. Associated Species
    57 6. Associated species As mentioned earlier, associated species are those impacted species that are not part of the landed catch. Fisheries for straddling fish stocks, highly migratory fish stocks, and high seas fish stocks, impact other species as a result of: (1) discards, (2) physical contact of fishing gear with organisms (and habitat) that are not caught, and (3) indirect processes. Discards are considered in section 6.1 while physical contact and indirect processes are considered together in section 6.2. 6.1 DISCARDS Much more is known about discards than the other mechanisms through which fisheries impact associated species, although information is still limited. The most recent global information on discards is in an FAO report by Kelleher (2005). It estimates that the rate of discards is about 8 percent for all marine fisheries combined (EEZ and high seas), with large differences by countries, gear types, target species and statistical areas. Shrimp trawling has the highest estimated average discard rate (62.3 percent), but the rates vary widely between fisheries (from 0 to 96 percent). Most shrimp trawling is on stocks confined to the EEZ, although there are some straddling or other high seas stocks of shrimp that are fished. These are likely to be fisheries in relatively deep water for cold-water species, such as the fishery for Pandalus shrimp on the Flemish Cap off Newfoundland and off Labrador in the northwest Atlantic (FAO statistical area 21). The aggregate discard rate for cold/deep-water shrimp fisheries is 39 percent, but where use of bycatch reduction devices (BRDs) is mandated (e.g.
    [Show full text]
  • DIET of the OILFISH Ruvettus Pretiosus (PERCIFORMES: GEMPYLIDAE) in the SAINT PETER and SAINT PAUL ARCHIPELAGO, BRAZIL
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 60(2):181-188, 2012 DIET OF THE OILFISH Ruvettus pretiosus (PERCIFORMES: GEMPYLIDAE) IN THE SAINT PETER AND SAINT PAUL ARCHIPELAGO, BRAZIL Danielle de Lima Viana*, Mariana Travassos Tolotti, Mariana Porto, Rodolfo Jorge Vale de Araújo, Teodoro Vaske Júnior and Fabio Hissa Vieira Hazin Universidade Federal de Pernambuco - Departamento de Pesca (Av. Dom Manuel de Medeiros, S/N, 52171-030 Jaboatão dos Guararapes, PE, Brasil) *Corresponding author: [email protected] ABSTRACT Feeding aspects of the oilfish , Ruvettus pretiosus , were studied based on 360 stomachs of both male and female specimens caught off the Saint Peter and Saint Paul Archipelago. The total length of the specimens ranged from 52.4 cm to 189.0 cm. Of the 360 stomachs examined, 135 presented some food and 225 were empty. Thirty-four taxa were identified, represented by 16 fish, 17 cephalopods and 1 crustacean. The stabilization of the food items richness was attained at 35 food items and 104 stomachs, approximately. A remarkable predation upon the flying fish Cheilopogon cyanopterus was observed around SPSPA, directly related to the main reproductive period of this species in the area. The oilfish’s food spectrum shows that the species feeds on a wide vertical range in the water column, catching prey items at the surface or in shallow waters, as well as epi-mesopelagic fish, in addition to mesopelagic cephalopods. RESUMO Aspectos alimentares do peixe-prego, Ruvettus pretiosus , foram estudados com base nos estômagos de 360 espécimes, de ambos os sexos, capturados nos arredores do Arquipélago de São Pedro e São Paulo.
    [Show full text]
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 15 ISSN 0014-5602 FIR/S1 25 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (FAMILIES GEMPYLIDAE AND TRICHIURIDAE) AN ANNOTATED AND ILLUSTRATED CATALOGUE OF THE SNAKE MACKERELS, SNOEKS, ESCOLARS, GEMFISHES, SACKFISHES, DOMINE, OILFISH, CUTLASSFISHES, SCABBARDFISHES, HAIRTAILS AND FROSTFISHES KNOWN TO DATE 12®lÄSÄötfSE, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO Fisheries Synopsis No. 125, Volume 15 FIR/S125 Vol. 15 FAO SPECIES CATALOGUE VOL. 15. SNAKE MACKERELS AND CUTLASSFISHES OF THE WORLD (Families Gempylidae and Trichiuridae) An Annotated and Illustrated Catalogue of the Snake Mackerels, Snoeks, Escolars, Gemfishes, Sackfishes, Domine, Oilfish, Cutlassfishes, Scabbardfishes, Hairtails, and Frostfishes Known to Date by I. Nakamura Fisheries Research Station Kyoto University Maizuru, Kyoto, 625, Japan and N. V. Parin P.P. Shirshov Institute of Oceanology Academy of Sciences Krasikova 23 Moscow 117218, Russian Federation FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1993 The designations employed and the presenta­ tion of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M -40 ISBN 92-5-103124-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Volume III of This Document)
    4.1.3 Coastal Migratory Pelagics Description and Distribution (from CMP Am 15) The coastal migratory pelagics management unit includes cero (Scomberomous regalis), cobia (Rachycentron canadum), king mackerel (Scomberomous cavalla), Spanish mackerel (Scomberomorus maculatus) and little tunny (Euthynnus alleterattus). The mackerels and tuna in this management unit are often referred to as ―scombrids.‖ The family Scombridae includes tunas, mackerels and bonitos. They are among the most important commercial and sport fishes. The habitat of adults in the coastal pelagic management unit is the coastal waters out to the edge of the continental shelf in the Atlantic Ocean. Within the area, the occurrence of coastal migratory pelagic species is governed by temperature and salinity. All species are seldom found in water temperatures less than 20°C. Salinity preference varies, but these species generally prefer high salinity. The scombrids prefer high salinities, but less than 36 ppt. Salinity preference of little tunny and cobia is not well defined. The larval habitat of all species in the coastal pelagic management unit is the water column. Within the spawning area, eggs and larvae are concentrated in the surface waters. (from PH draft Mackerel Am. 18) King Mackerel King mackerel is a marine pelagic species that is found throughout the Gulf of Mexico and Caribbean Sea and along the western Atlantic from the Gulf of Maine to Brazil and from the shore to 200 meter depths. Adults are known to spawn in areas of low turbidity, with salinity and temperatures of approximately 30 ppt and 27°C, respectively. There are major spawning areas off Louisiana and Texas in the Gulf (McEachran and Finucane 1979); and off the Carolinas, Cape Canaveral, and Miami in the western Atlantic (Wollam 1970; Schekter 1971; Mayo 1973).
    [Show full text]