ANALYSIS of the FISHES of CHILE. by • • H EN RY F Owler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vicariance and Dispersal in Southern Hemisphere Freshwater Fish Clades
Biol. Rev. (2019), 94, pp. 662–699. 662 doi: 10.1111/brv.12473 Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective Alessio Capobianco∗ and Matt Friedman Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1105 N. University Ave, Ann Arbor, MI 48109-1079, U.S.A. ABSTRACT Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break-ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node-based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well-known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non-uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total-group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). -
Primeros Estadios Del Ciclo De Vida De Peces Nativos Del Río San Pedro
GayanaGayana Especial:75(2), 2012 86-100, 2012. Primeros estadíos del ciclo de vida de peces nativos del Río San Pedro (Cuenca del Río Valdivia, Chile) First stages of the life cycle in native fi sh from the San Pedro River (Valdivia River Basin, Chile) GERMÁN MONTOYA1*, ALFONSO JARA1, KATHERIN SOLIS-LUFÍ1, NICOLE COLIN1,2 & EVELYN HABIT1 1 Unidad de Sistemas Acuáticos, Centro EULA, Universidad de Concepción. Casilla 160-C. 2 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográfi ca, Universidad de Concepción. *Email: [email protected] RESUMEN Los estadíos de huevos, larvas y juveniles de los peces de agua dulce nativos de Chile son prácticamente desconocidos. Conocer su estacionalidad, morfología y uso de hábitat es relevante para comprender su biología y permitir la conservación de esta ictiofauna altamente amenazada. Asimismo, los primeros estadíos del ciclo de vida de los peces determinan la persistencia de las poblaciones en el tiempo. Dado esto, el objetivo del presente trabajo fue dar a conocer y describir los resultados de intensivos muestreos (465 días) destinados a encontrar los primeros estadíos de las 14 especies nativas que habitan el río San Pedro (cuenca del Valdivia). Los muestreos se efectuaron desde octubre de 2005 a marzo de 2008. Se encontraron huevos, larvas y juveniles de Galaxias maculatus, Basilichthys australis y Percilia gillissi; larvas y juveniles de Geotria australis y Trichomycterus areolatus, y juveniles de Diplomystes camposensis, Percichthys trucha y Cheirodon australe. En cada caso se describe la época y hábitat de ocurrencia, así como sus características morfológicas generales, lo cual para P. gillissi constituye la primera descripción de sus estadíos de desarrollo embrional y larvario. -
Nuclear Gene-Inferred Phylogenies Resolve the Relationships of the Enigmatic Pygmy Sunfishes, Elassoma (Teleostei: Percomorpha)
Molecular Phylogenetics and Evolution 63 (2012) 388–395 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Nuclear gene-inferred phylogenies resolve the relationships of the enigmatic Pygmy Sunfishes, Elassoma (Teleostei: Percomorpha) a, b a,1 c d Thomas J. Near ⇑, Michael Sandel , Kristen L. Kuhn , Peter J. Unmack , Peter C. Wainwright , Wm. Leo Smith e a Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA b Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA c National Evolutionary Synthesis Center, 2024 West Main Street, Suite A200, Durham, NC 27705-4667, USA d Department of Evolution & Ecology, University of California, One Shields Ave., Davis, CA 95616, USA e Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Elassoma, the Pygmy Sunfishes, has long proven difficult to classify among the more than 15,000 species Received 4 November 2011 of percomorph fishes. Hypotheses dating to the 19th Century include Elassoma in Centrarchidae or in the Revised 7 January 2012 monogeneric Elassomatidae, and more recent phylogenetic hypotheses have classified Elassoma in Accepted 13 January 2012 Smegmamorpha that also contained Synbranchiformes, Mugiliformes, Gasterosteiformes, and Atherino- Available online 26 January 2012 morpha. No published phylogenetic analysis of morphological or molecular data has supported the monophyly of Smegmamorpha, or a consistent resolution of Elassoma relationships. In this study, we Keywords: investigated the phylogenetic relationships of Elassoma and test the monophyly of Smegmamorpha with Phylogeny a nucleotide dataset comprising 10 protein-coding nuclear genes sampled from 65 percomorph species. -
Of Mitochondrial Genomes for Protonibea Diacanthus
Table S1. Codon Number, Frequency and RSCU (Relative Synonymous Codon Usage) of mitochondrial genomes for Protonibea diacanthus. Amino acid Codon Number Frequency(%) RSCU Ala GCC 170 4.4702 1.9048 Ala GCA 115 3.0239 1.2885 Ala GCT 58 1.5251 0.6499 Ala GCG 14 0.3681 0.1569 Arg CGA 46 1.2096 2.3000 Arg CGC 22 0.5785 1.1000 Arg CGG 6 0.1578 0.3000 Arg CGT 6 0.1578 0.3000 Asn AAC 88 2.3140 1.4915 Asn AAT 30 0.7889 0.5085 Asp GAC 62 1.6303 1.6104 Asp GAT 15 0.3944 0.3896 Cys TGC 20 0.5259 1.5385 Cys TGT 6 0.1578 0.4615 Gln CAA 79 2.0773 1.7363 Gln CAG 12 0.3155 0.2637 Glu GAA 73 1.9195 1.4314 Glu GAG 29 0.7626 0.5686 Gly GGC 106 2.7873 1.7890 Gly GGA 62 1.6303 1.0464 Gly GGG 37 0.9729 0.6245 Gly GGT 32 0.8414 0.5401 His CAC 77 2.0247 1.4528 His CAT 29 0.7626 0.5472 Ile ATC 147 3.8654 1.0352 Ile ATT 137 3.6024 0.9648 Leu CTC 215 5.6534 1.9225 Leu CTA 180 4.7331 1.6095 Leu CTT 134 3.5235 1.1982 Leu TTA 74 1.9458 0.6617 Leu CTG 48 1.2622 0.4292 Leu TTG 20 0.5259 0.1788 Lys AAA 69 1.8144 1.7692 Lys AAG 9 0.2367 0.2308 Met ATA 88 2.3140 1.2754 Met ATG 50 1.3148 0.7246 Phe TTC 151 3.9705 1.2227 Phe TTT 96 2.5243 0.7773 Pro CCC 123 3.2343 2.1674 Pro CCA 51 1.3410 0.8987 Pro CCT 41 1.0781 0.7225 Pro CCG 12 0.3155 0.2115 Ser TCC 79 2.0773 2.1161 Ser TCA 61 1.6040 1.6339 Ser AGC 34 0.8940 0.9107 Ser TCT 28 0.7363 0.7500 Ser AGT 14 0.3681 0.3750 Ser TCG 8 0.2104 0.2143 Stp TAA 4 0.1052 2.0000 Stp AGA 2 0.0526 1.0000 Stp TAG 2 0.0526 1.0000 Stp AGG 0 0.0000 0.0000 Thr ACC 136 3.5761 1.8133 Thr ACA 103 2.7084 1.3733 Thr ACT 51 1.3410 0.6800 Thr ACG 10 0.2630 0.1333 Trp TGA 93 2.4454 1.5630 Trp TGG 26 0.6837 0.4370 Tyr TAC 81 2.1299 1.3729 Tyr TAT 37 0.9729 0.6271 Val GTA 61 1.6040 1.2513 Val GTC 60 1.5777 1.2308 Val GTT 50 1.3148 1.0256 Val GTG 24 0.6311 0.4923 Tab. -
Annotated Checklist of Fish Cestodes from South America
A peer-reviewed open-access journal ZooKeys 650: 1–205 (2017) Annotated checklist of fish cestodes from South America 1 doi: 10.3897/zookeys.650.10982 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Annotated checklist of fish cestodes from South America Philippe V. Alves1, Alain de Chambrier2, Tomáš Scholz3, José L. Luque4 1 Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil 2 Natural History Museum of Geneva, CP 6434, CH - 1211 Geneva 6, Switzerland 3 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 4 Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, CP 74.540, BR 465, Km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil Corresponding author: Tomáš Scholz ([email protected]) Academic editor: B. Georgiev | Received 2 November 2016 | Accepted 21 December 2016 | Published 1 February 2017 http://zoobank.org/CAD92ABE-4626-4206-98E3-E044D45EA9AC Citation: Alves PV, de Chambrier A, Scholz T, Luque JL (2017) Annotated checklist of fish cestodes from South America. ZooKeys 650: 1–205. https://doi.org/10.3897/zookeys.650.10982 Abstract An exhaustive literature search supplemented by a critical examination of records made it possible to pre- sent an annotated checklist of tapeworms (Cestoda) that, as adults or larvae (metacestodes), parasitize fresh- water, brackish water and marine fishes, i.e. cartilaginous and bony fishes, in South America. The current knowledge of their species diversity, host associations and geographical distribution is reviewed. -
Teleostei: Percichthyidae: Gadopsis)Of South-Eastern Australia
bs_bs_banner Biological Journal of the Linnean Society, 2014, ••, ••–••. With 6 figures A multigene molecular assessment of cryptic biodiversity in the iconic freshwater blackfishes (Teleostei: Percichthyidae: Gadopsis)of south-eastern Australia MICHAEL P. HAMMER1,2,3*, PETER J. UNMACK4,5, MARK ADAMS1,2, TARMO A. RAADIK6 and JERALD B. JOHNSON4 1Evolutionary Biology Unit, South Australian Museum, North Terrace, SA 5000, Australia 2Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Science, The University of Adelaide, Adelaide, SA 5005, Australia 3Curator of Fishes, Museum and Art Gallery of the Northern Territory, PO Box 4646, Darwin, NT 0801, Australia 4WIDB 401, Department of Biology, Brigham Young University, Provo, UT 84602, USA 5Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra, Canberra, ACT 2601, Australia 6Aquatic Ecology Section, Arthur Rylah Institute for Environmental Research, Department of Environment and Primary Industries, 123 Brown Street, Heidelberg, VIC 3084, Australia Received 6 September 2013; revised 22 October 2013; accepted for publication 22 October 2013 Freshwater biodiversity is under ever increasing threat from human activities, and its conservation and manage- ment require a sound knowledge of species-level taxonomy. Cryptic biodiversity is a common feature for aquatic systems, particularly in Australia, where recent genetic assessments suggest that the actual number of freshwater fish species may be considerably higher than currently listed. The freshwater blackfishes (genus Gadopsis) are an iconic group in south-eastern Australia and, in combination with their broad, naturally divided distribution and biological attributes that might limit dispersal, as well as ongoing taxonomic uncertainty, they comprise an ideal study group for assessing cryptic biodiversity. -
Phylogenetic Classification of Bony Fishes Ricardo Betancur-R1,2*, Edward O
Betancur-R et al. BMC Evolutionary Biology (2017) 17:162 DOI 10.1186/s12862-017-0958-3 RESEARCH ARTICLE Open Access Phylogenetic classification of bony fishes Ricardo Betancur-R1,2*, Edward O. Wiley3,4, Gloria Arratia3, Arturo Acero5, Nicolas Bailly6, Masaki Miya7, Guillaume Lecointre8 and Guillermo Ortí2,9 Abstract Background: Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson’s volumes of Fishes of the World and W. Eschmeyer’s Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny (www.deepfin.org). We here update the first version of that classification by incorporating the most recent phylogenetic results. Results: The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. -
Peces Nativos En Aguas Continentales Del Sur De Chile Native Inland Fishes of Southern Chile
Peces nativos en aguas continentales del Sur de Chile Native inland fishes of Southern Chile Iván Arismendi & Brooke Penaluna Peces nativos en aguas continentales del Sur de Chile Native inland fishes of Southern Chile 1 Peces nativos en aguas continentales del Sur de Chile / Native inland fishes of Southern Chile 2 Arismendi I & B Penaluna. 2009. Peces nativos en aguas continentales del Sur de Chile / Native inland fishes of Southern Chile © Iván Arismendi & Brooke Penaluna Iván Arismendi, Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Valdivia, Chile · Email: [email protected] Brooke Penaluna, Department of Fish and Wildlife, Oregon State University, Corvallis, OR, USA · Email: [email protected] Revisada por / revised by Dr. Hugo L. López, Jefe de División Zoología Vertebrados, Museo de La Plata, La PLata, Argentina Dr. Brian Dyer, Centro de Ciencias y Ecología Aplicada, Universidad del Mar, Valparaíso, Chile Coordinador del Proyecto / Project Coordinator Francisco Morey Fotografías / Photographs - Iván Arismendi Ilustraciones / Illustrations - Brooke Penaluna Diseño Grá!co y Diagramación / Graphic Design & Page Layout - Joaquín Sobell · www.joaquinsobell.cl Impresión / Printed - Imprenta América Ltda. Agradecimientos / Acknowledgements La presente guía de campo ha sido !nanciada por la Iniciativa Cientí!ca Milenio a través del Núcleo Milenio Forecos P04-065-F de MIDEPLAN. Queremos agradecer la contribución de algunas personas en la obtención de especímenes para fotogra!ar y dibujar. Especialmente a Roberto Meléndez y Augusto Cornejo del Museo Nacional de Historia Natural, Carlos Jara del Instituto de Zoología, Universidad Austral de Chile y Jorge González, Universidad de Concepción. También agradecemos a Brian Dyer, Universidad del Mar, quien ayudó en la obtención de información sobre la identi!cación de individuos del género Cheirodon. -
Family-Group Names of Recent Fishes
Zootaxa 3882 (2): 001–230 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3882.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:03E154FD-F167-4667-842B-5F515A58C8DE ZOOTAXA 3882 Family-group names of Recent fishes RICHARD VAN DER LAAN1,5, WILLIAM N. ESCHMEYER2 & RONALD FRICKE3,4 1Grasmeent 80, 1357JJ Almere, The Netherlands. E-mail: [email protected] 2Curator Emeritus, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. E-mail: [email protected] 3Im Ramstal 76, 97922 Lauda-Königshofen, Germany. E-mail: [email protected] 4Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany [temporarily out of office] 5Corresponding author Magnolia Press Auckland, New Zealand Accepted by L. Page: 6 Sept. 2014; published: 11 Nov. 2014 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 RICHARD VAN DER LAAN, WILLIAM N. ESCHMEYER & RONALD FRICKE Family-group names of Recent fishes (Zootaxa 3882) 230 pp.; 30 cm. 11 Nov. 2014 ISBN 978-1-77557-573-3 (paperback) ISBN 978-1-77557-574-0 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press 2 · Zootaxa 3882 (1) © 2014 Magnolia Press VAN DER LAAN ET AL. Table of contents Abstract . .3 Introduction . .3 Methods . .5 Rules for the family-group names and how we dealt with them . .6 How to use the family-group names list . -
Current Situation of the Fish Fauna in the Mediterranean Region of Andean River Systems in Chile Irma Vila1* and Evelyn Habit2 1
Current situation of the fish fauna in the Mediterranean region of Andean river systems in Chile Irma Vila1* and Evelyn Habit2 1. Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile 2. Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro de Cien- cias Ambientales EULA Chile, Universidad de Concepción, Concepción, Chile * correspondence to [email protected] SUMMARY The low number of native fish species of the Chilean Mediterranean region (27º S to 36º S) is a consequence of its geographic and hydrological characteristics. The area has marked precipitation gradients as a result of both latitudinal differences in pre- cipitation and the higher precipitation at high altitudes in the Andes. The seasonal hydrologic variability characteristic of Mediterranean climatic zones occurs in the area together with inter-annual variations due to El Niño Southern Oscillation (EN- SO), a significant oceanic climatic influence which determines lower daily and sea- sonal temperature gradients compared to similar northern latitudes. River catch- ment areas above 3000 elevation generate short and torrential channels with high velocity, a snow–pluvial regime without riparian vegetation and high total salinity composition. Only 21 native species have been described in this region. They are important due to their high endemism and primitiveness, along with their biogeographical relations, especially the Siluriforms with the northern tropical fauna and the Galaxiidae with Gondwana fish. Currently 75% of the fish species of this region are classified as en- dangered or vulnerable according to Chilean regulations. Knowledge of the biology and ecology of these species is still incomplete. The infor- mation available is mostly classical morphological descriptions, although recently there have been studies of genetics and speciation. -
Fish Biodiversity and Conservation in South America
Journal of Fish Biology (2016) 89, 12–47 doi:10.1111/jfb.13016, available online at wileyonlinelibrary.com Fish biodiversity and conservation in South America R. E. Reis*†, J. S. Albert‡, F. Di Dario§, M. M. Mincarone§, P. Petry‖ and L. A. Rocha¶ *PUCRS, Laboratory of Vertebrate Systematics, Av. Ipiranga, 6681, 90619-900 Porto Alegre, Brazil, ‡University of Louisiana at Lafayette, Lafayette, LA 70504-2451, U.S.A., §Universidade Federal do Rio de Janeiro (UFRJ), Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé (NUPEM), Grupo de Sistemática e Biologia Evolutiva, Caixa Postal 119331, 27910-970, Macaé, RJ, Brazil, ‖Museum of Comparative Zoology, Harvard University, 26 Oxford St Cambridge, MA, 02138, U.S.A. and ¶Section of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr, San Francisco, CA 94118, U.S.A. The freshwater and marine fish faunas of South America are the most diverse on Earth, with current species richness estimates standing above 9100 species. In addition, over the last decade at least 100 species were described every year. There are currently about 5160 freshwater fish species, and the estimate for the freshwater fish fauna alone points to a final diversity between 8000 and 9000 species. South America also has c. 4000 species of marine fishes. The mega-diverse fish faunas of South Amer- ica evolved over a period of >100 million years, with most lineages tracing origins to Gondwana and the adjacent Tethys Sea. This high diversity was in part maintained by escaping the mass extinctions and biotic turnovers associated with Cenozoic climate cooling, the formation of boreal and temperate zones at high latitudes and aridification in many places at equatorial latitudes.