A New Model of Microcracks Propagation in Granite Rock
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events. -
Lund, Sweden, January 8–10 2014
31st Nordic Geological Winter Meeting. Lund, Sweden. January 8-10, 2014 31st Nordic Sponsors Hosted by the Geological Society of Sweden Lund, Sweden, January 8–10 2014 Abiskojokk canyon, Abisko Sweden Photo: Mark Johnson, 2012 Main sponsors Table of Contents Welcome ______________________________________________________ 2 Organizing committee __________________________________________ 3 Scientific program committee ___________________________________ 3 Program Overview _____________________________________________ 4 Social Program ________________________________________________ 5 Scientific Program______________________________________________ 6 - Oral presentations __________________________________________ 7 - Posters ___________________________________________________ 22 Abstracts1 ________________________________________________ 34 - Plenary talks ________________________________________________ 35 - HYD-ENV Hydrogeology/Environmental Geology _______________ 37 - ENG-GEO Engineering Geology ______________________________ 46 - ECON-OIL Economic and Petroleum Geology __________________ 50 - LUNDPAL Lundadagarna i Historisk Geologi och Paleontologi ____________________________________________ 64 - PET Petrology ______________________________________________ 77 - STR-TEC Structural Geology/Tectonics ________________________ 104 - MOR-GLA Geomorphology and Glacial Geology ______________ 126 - QUAT Quaternary Geology _________________________________ 148 - GEOBIO Geobiology and Astrobiology _______________________ 156 - GEOP Geophysics -
THERMAL STRESS-INDUCED MICROCRACKING in BUILDING GRANITE 2 3 Freire-Lista, D.M.A,B,*, Fort, R.A,B, Varas-Muriel, M.J.A,B,C
1 THERMAL STRESS-INDUCED MICROCRACKING IN BUILDING GRANITE 2 3 Freire-Lista, D.M.a,b,*, Fort, R.a,b, Varas-Muriel, M.J.a,b,c 4 aInstituto de Geociencias IGEO (CSIC, UCM) Spanish Research Council CSIC – Complutense University of Madrid UCM. Madrid 28040, Spain 5 bCEI Campus Moncloa, UCM-UPM and CSIC, Madrid 28040, Spain 6 cFacultad de CC. Geológicas. Complutense University of Madrid UCM. Madrid, 28040, Spain 7 8 *Corresponding author. 9 E-mail addresses: [email protected] 10 11 Abstract 12 13 Microcracking induced by wide fluctuations in temperature affects granite quality and durability, making the stone more vulnerable to decay. 14 Determining the extent of that effect is not always straightforward, however, given the excellent durability of these materials. 15 Four types of construction granite quarried in the region of Madrid, Spain, and frequently used in both the built heritage and in de novo 16 construction (Alpedrete, Cadalso de los Vidrios, Colmenar Viejo and Zarzalejo) were exposed to 42 thermal cycles (105-20º C; UNE-EN, 14066, 17 2003). Petrographic and petrophysical properties were analysed using both destructive and non-destructive techniques. Microcracking generated in 18 the granite stones by 42 thermal cycles had barely any impact on their petrophysical properties, which are the parameters normally assessed to 19 establish material quality and durability. Their petrographic properties, which are not generally assessed in this type of studies, were affected, 20 however. This study contends that petrographic analysis is needed to objectively quantify the actual quality and durability of the most highly 21 resistant materials when petrophysical studies are inconclusive. -