Keyways for Drive Wheels & Custom Specials Wheels
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Rear Driveline Package for Formula SAE
Lightweight Torsen Style Limited Slip Differential and Rear Driveline Package for Formula SAE by Tony Scelfo SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2006 C2006 Tony Scelfo. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic MASSACHUt'i'Fl-. I I'ITUTE copies of this thesis document in whole or in part Or 'r.. v,, in any medium now known or hereafter created. AU 0 2 2006 /, // LIBRARIES Signature of Author 4::epx ep ,tof Mechanical Engineering May 12, 2006 Certified by I 1// ' ) J ?Daniel Frey Professor of Mechanical Engineering Thesis Supervisor Accepted by _ i__ _l.__ __ John H. Lienhard V KCj I . rossor of Mechanical Engineering Chairman, Undergraduate Thesis Committee ARCHIVES Table of Contents ABSTRACT......................................................................................................................... 7 I FSAE Competition ........................................................................................................... 9 2 Overall Design Philosophy........................................ 10 2.1 Functional Requirements....................................................................................... 10 2.2 Manufacturing Concerns ........................................ 11 2.3 Integration ............................................................................................................. -
From the Intelligent Wheel Bearing to the Robot Wheel: Schaeffler
29 Robot Wheel 29 Robot Wheel Robot Wheel 29 From the intelligent wheel bearing to the “robot wheel” Bernd Gombert 29 378 Schaeffl er SYMPOSIUM 2010 Schaeffl er SYMPOSIUM 2010 379 29 Robot Wheel Robot Wheel 29 ered as well. Mechanical steering and braking ele- The increasing ments are being replaced by mechatronic compo- nents thereby leading to higher functi onality with requirements placed increased safety. When referring to the further developments in on motor vehicles safety, the vision of “zero accidents” (autonomous and accident-free driving) has to be menti oned. Why is the trend heading Aft er slip control braking and driving stability sys- towards electromobility? tems, driver assistance systems known as ADAS (Advanced Driver Assistance Systems) are now be- Environmentally-friendly electrical mobility is the ing created as a further requirement for making expected trend and will become a real alternati ve this vision a reality. Figure 2 The fi rst electric vehicle, built in 1835 [1] Figure 4 Lohner-Porsche with four wheel hub motors to the current state of the art. Innovati ve technolo- By-wire technology, amongst others, is one of the in 1900 [1] gies, high oil prices and the increasing ecological nate the transmission and drive shaft since the prerequisites for the implementati on of ADAS. It awareness of many people are reasons, why elec- wheel rotated as the rotor of the direct current In order to compensate for the lack of range, of- monitors the current traffi c situati on and acti vely tromobility is increasingly gaining worldwide ac- motor around the stator, that was fixed to the fered by a vehicle only powered by electricity, supports the driver. -
The Butler Passport to Higher Performance Rel
The Butler Passport to Higher Performance rel. Sept. 2003 2.0.0 RIM. 2.1.0 DEFINITION. The rim is the part of the wheel that has a suitable profi le and is of suitable dimensions to be a seat for the tyre. Passenger car rims are made up of three distinct areas, each of which performs a particular function: • a dropped central part, which is necessary for the operations of mounting and demounting the tyre; • two lateral fl anges, which bear the axial thrusts; • two conical seats, which serve as fastening seats for the tyre beads. The profi le can be symmetric as regards the central line. Usually, however, it is asymmetric in order to leave more room for the braking equipment. 2.1.1 RIM DESIGNATION. The dimensions of existing rim types are (further) expressed in F.E.: 4 1⁄2× 12. New concepts or types have to be expressed in mm when mounted in combination with new types/concept of tyres. F.E.: 365 × 150 TD, CT 450 × 150, PAX 145 × 360 A (Pict.1) Most of the times, also the type of rim edge is mentioned: F.E.: 4 1⁄2 ×B 12, 5 1⁄2 J × 13 (see chapter 2.11.0 “Different Rim Edges). Symmetrical rims are indicated with an additional “s” F.E.: 4 1⁄2 ×J 13 - S The symbol “×” indicates a “one-piece” rim: F.E.: 4 1⁄2× 12 The symbol “-” indicates a “multi-piece” rim: F.E.: 15 - 5 1⁄2 F SDC. The “DIN” and “ETRTO” sizing are putting fi rst the rim width followed by the diameter: F.E.: 6 J × 15. -
2 Forward Vehicle Dynamics
2 Forward Vehicle Dynamics Straight motion of an ideal rigid vehicle is the subject of this chapter. We ignore air friction and examine the load variation under the tires to determine the vehicle’s limits of acceleration, road grade, and kinematic capabilities. 2.1 Parked Car on a Level Road When a car is parked on level pavement, the normal force, Fz, under each of the front and rear wheels, Fz1 , Fz2 ,are 1 a F = mg 2 (2.1) z1 2 l 1 a F = mg 1 (2.2) z2 2 l where, a1 is the distance of the car’s mass center, C,fromthefrontaxle, a2 is the distance of C from the rear axle, and l is the wheel base. l = a1 + a2 (2.3) z a2 a1 x C 2Fz2 mg 2Fz1 FIGURE 2.1. A parked car on level pavement. 40 2. Forward Vehicle Dynamics Proof. Consider a longitudinally symmetrical car as shown in Figure 2.1. It can be modeled as a two-axel vehicle. A symmetric two-axel vehicle is equivalent to a rigid beam having two supports. The vertical force under the front and rear wheels can be determined using planar static equilibrium equations. Fz =0 (2.4) XMy =0 (2.5) Applying the equilibrium equationsX 2Fz +2Fz mg =0 (2.6) 1 2 − 2Fz a1 +2Fz a2 =0 (2.7) − 1 2 provide the reaction forces under the front and rear tires. 1 a2 Fz1 = mg 2 a1 + a2 1 a = mg 2 (2.8) 2 l 1 a1 Fz2 = mg 2 a1 + a2 1 a = mg 1 (2.9) 2 l Example 39 Reaction forces under wheels. -
2014 Nissan Altima Sedan | Owner's Manual
2014 NISSAN ® ALTIMA SEDAN 2014 ALTIMA SEDAN OWNER’S MANUAL L33-D Printing : June 2013 (06) Publication No.: OM0EOM14E 0L32U2 0L33U0 For your safety, read carefully and keep in this vehicle. Printed in U.S.A. L33-D FOREWORD READ FIRST—THEN DRIVE SAFELY Welcome to the growing family of new NISSAN In addition to factory installed options, your ve- Before driving your vehicle, please read this owners. This vehicle is delivered to you with hicle may also be equipped with additional ac- Owner’s Manual carefully. This will ensure famil- confidence. It was produced using the latest cessories installed by NISSAN or by your iarity with controls and maintenance require- techniques and strict quality control. NISSAN dealer prior to delivery. It is important ments, assisting you in the safe operation of your that you familiarize yourself with all disclosures, vehicle. This manual was prepared to help you under- warnings, cautions and instructions concerning stand the operation and maintenance of your proper use of such accessories prior to operating WARNING vehicle so that you may enjoy many miles (kilome- the vehicle and/or accessory. See a NISSAN ters) of driving pleasure. Please read through this dealer for details concerning the particular ac- IMPORTANT SAFETY INFORMATION RE- manual before operating your vehicle. cessories with which your vehicle is equipped. MINDERS FOR SAFETY! A separate Warranty Information Booklet Follow these important driving rules to explains details about the warranties cov- help ensure a safe and comfortable trip ering your vehicle. The “NISSAN Service for you and your passengers! and Maintenance Guide” explains details ● NEVER drive under the influence of al- about maintaining and servicing your ve- cohol or drugs. -
“I Hate This Chair!” Translating Common Power Wheelchair Challenges Into Practice Solutions
“I Hate This Chair!” Translating Common Power Wheelchair Challenges into Practice Solutions Emma M. Smith, MScOT, ATP/SMS Brenlee Mogul-Rotman, OT, ATP/SMS Tricia Garven, MPT, ATP PhD Candidate, Rehab Sciences National Clinical Education Manager Regional Clinical Education Manager University of British Columbia Permobil Canada Permobil USA 34th International Seating Symposium Westin Bayshore, Vancouver, Canada March 6, 2018 Disclosure Emma Smith has no affiliations, financial or otherwise, to disclose. Brenlee Mogul-Rotman and Tricia Garven are employees of Permobil Inc. Overview • Introductions • Drive Configuration • Seating and Positioning • Drive Controls • Proportional v. Non-Proportional • Programming Parameters • Clinical Relevance • Case Study Stations (4) • Discussion and wrap-up Getting to know you… http://etc.ch/7anN Drive Configuration And how it impacts your clients.. Selecting the most appropriate wheelchair base 1. Understanding Consumer’s Needs 2. Objectively Compare and Contrast Features of Power Wheelchair • Goals and Lifestyle Bases • Environment and • Real life information Transportation • Realistic expectation • Medical Issues Rear-Wheel Drive (RWD) – general perceptions • Good tracking for higher speeds • Most sensitive to changes in weight distribution • Typically has good suspension • Obstacle climbing – needs to be straight on • Front swiveling casters • LE positioning/stand pivot transfers • Largest Turning Radius Mid-Wheel Drive (MWD) – general perceptions • Good stability for power seating • Intuitive Driving -
Drive Train Selection
Selecting the best drivetrains for your fleet vehicles Drivetrain Basics FWD RWD AWD 4WD Front-wheel drive Rear-wheel drive All-wheel drive (AWD) 4WD generally (FWD) is the most (RWD) is regaining vehicles drive all four requires manually common form of popularity due to wheels. AWD is used switching between engine/transmission consumer demand to market vehicles two-wheel drive for layout; the engine for performance; the that switch from two streets and a drives only the front engine drives only drive wheels to four four-wheel drive for wheels. the rear wheels. as needed. low traction areas. Two-wheel drive (2WD) is used to describe vehicles able to power two wheels at most. For vehicles with part-time four-wheel drive (4WD), the term refers to the mode when 4WD is deactivated and power is applied to only two wheels. Sedans | Minivans | Crossovers Pickups | Full-Size Vans | SUVs Generally FWD, RWD and AWD Generally 2WD and 4WD Element Fleet Management ® Acquisition Cost FWD RWD AWD 2WD 4WD FWD less expensive RWD can be more AWD generally most due to fewer expensive due to more expensive due to more 4WD is more expensive than 2WD due to components and more components and parts than FWD and heavier-duty components efficient manufacturing additional time to RWD assemble Select vehicles based on intended function and operating environment rather than acquisition cost, as these factors largely dictate operating costs Operating Expenses: Fuel Efficiency FWD RWD AWD 2WD 4WD FWD more efficient More parts for RWD More parts for AWD 2WD gets better -
LPG In-Service Vehicle Emissions Study in Australia
MOTOR VEHICLE POLLUTION IN AUSTRALIA Supplementary Report No. 1 LPG In-Service Vehicle Emissions Study prepared by the NSW Environment Protection Authority for Environment Australia & Federal Office of Road Safety May 1997 GPO Box 594 Tel: +61 6 274 7111 Canberra ACT 2601 Fax: +61 6 274 7714 Australia ACKNOWLEDGMENTS Environment Australia commissioned the NSW EPA to undertake the LPG In-service Vehicle Emissions Study. The Federal Office of Road Safety was responsible for overall financial and project management of the Study. The NSW EPA Project Team wishes to acknowledge the considerable support given by a number of organisations over the duration of the study. Particular thanks are extended to the following contributors: · the thirteen householders who entrusted their private vehicles to the emissions laboratories for testing; · ALPGA, for providing advice on technical matters, supplying information on the LPG vehicle fleet characteristics and arranging industry support through the coordination of its members; · DASFleet, for providing new-model ‘replacement’ vehicles at nominal rates for use by the private vehicle owners who agreed to let us test their cars; · ELGAS Ltd., for supplying and delivering the test fuel (free of charge) to both laboratories; · NSW Taxi Council and the Victorian Taxi Council for assisting with arrangements to test a variety of taxis from a number of the members; · NRMA Limited, for providing comprehensive insurance coverage for all ‘replacement’ vehicles and for the provision of roadside service coverage -
Commercial Driver's License Manual
Commercial Driver License Manual 2005 CDL Testing System Version: July 2017 CDL Driver’s Manual COPYRIGHT © 2005 AAMVA All Rights Reserved This material is based upon work supported by the Federal Motor Carrier Safety Administration under Cooperative Agreement No. DTFH61-97-X-00017. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the Author(s) and do not necessarily reflect the view of the Federal Motor Carrier Safety Administration. COPYRIGHT © 2005 AAMVA. All rights reserved This material has been created for and provided to State Driver License Agencies (SDLAs) by AAMVA for the purpose of educating Driver License applicants (Commercial or Non-Commercial). Permission to reproduce, use, distribute or sell this material has been granted to SDLAs only. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. Any unauthorized reprint, use, distribution or sale of this material is prohibited. Human trafficking is modern-day slavery. Traffickers use force, fraud and coercion to control their victims. Any minor engaged in commercial sex is a victim of human trafficking. Trafficking can occur in many locations, including truck stops, restaurants, rest areas, brothels, strip clubs, private homes, etc. Truckers are the eyes and the ears of our nation’s highways. If you see a minor working any of those areas or suspect pimp control, call the National Hotline and report your tip: 1-888-3737-888 (US) 1-800-222-TIPS (Canada) For law enforcement to open an investigation on your tip, they need “actionable information.” Specific tips helpful when reporting to the hotline would include: Descriptions of cars (make, model, color, license plate number, etc.) and people (height, weight, hair color, eye color, age, etc.) Take a picture if you can. -
Superior Rideability
SUPERIOR RIDEABILITY RAZOR ▶ RAZOR IRS CONVERSION FOR HONDA GL 1800 MOTORCYCLES WANTED: RIDERS WITH AN EDGE Let out the aggressive side of your Gold Wing with the Razor: a sharp new body design on top of the best independent rear suspension conversion for the Honda® GL 1800™. Shown with optional 17" chrome BLVD rear wheels & tires, Performance Machine front wheel, side cover upgrade, and dual disc mechanical parking brake. 1-800-90-TRIKE • www.motortrike.com • FIND AN AUTHORIZED DEALER NEAR YOU AVAILABLE - Front & Rear Billet Aluminum Wheels OPTIONS - Front Wheel Balancer - Fender Bras with Optional Embroidery Motor Trike offers more Standard - Front End 4.5 Degree Rake Kit Features and Accessories than anyone - ABS Integration Kit - Parking Brake Kit else in the industry. - One-Piece Weight-Bearing Aqua Shields* - Aqua Shields Fog Lights* - Aqua Shield Color-Match Paint* - Aqua Shield Bras* - Trailer with Complementary Styling - Trailer Hitch Assembly - Trailer Wiring Harness with 6 Pin Connector - Chrome Nerf Bumper - Matte Black Nerf Bumper - Chrome Peterson Light Bar* - Chrome Küryakyn Light Bar* - Echo Exhaust - Trunk Carpet - Embroidered Trunk Mat - Chrome Side Cover Upgrade (2012 & Up) STANDARD FEATURES - Trike Cover - Independent Rear Suspension - Chrome Fender Trim - On-Board Air Compressor - Color-Match Paint - Patented Air Ride Suspension *Coming soon. - Over 4” of Suspension Travel Please visit our website for pricing. - Progressive Coil Over Shocks - Integrated Disc Brake System - Trike Trunk "Open" Warning Indicator - Trunk Light on Interior of Door - Hidden Trunk Door Hinges - Chrome Steel Wheels - 12 Volt Power Outlet in Trunk - Exceptional Plastic Side Cover Fit - LED Air Suspension & Voltmeter Readout All Motor Trike conversions include a patented air ride suspension, rear tires and wheels, interior trunk light, and a 3-year/60,000 mile warranty. -
What Is Match Mounting?
dding performance vehi- cle owners to your cus- tomer list can give a huge boost to your shop’s bot- tom line. These owners may be demanding—even picky—but they’ll pay well to get the jobA done exactly the way they want it. Some of the most common types of work done on performance vehicles in- volve the wheels and/or tires. The wheels are one of the most visible parts of a vehicle, so any work done on them must be top-notch—meaning clean, pretty and accurate. Custom wheel service can be broken down into two primary topics, essential- ly—tire match mounting and custom wheel handling. Since you’ll never mount a wheel without a tire, we’ll cov- er the ins and outs of tire match mounting first. What Is Match Mounting? Match mounting involves positioning the tire onto the wheel to minimize or eliminate the final combination of radial force variation and/or imbalance (radial force variation is explained later in this article). One match mounting approach involves aligning the tire’s point of maxi- mum radial force variation (its high spot) to the wheel’s radial low spot (where the wheel’s radial runout is the lowest). This is called the Uniformity Method. The other approach involves simply aligning the tire’s lightest balance point to the wheel’s heaviest balance point, called the Weight Method. OE tire suppliers are required to mark a tire’s radial runout high point, and OE wheel makers are required to mark a wheel’s radial runout low point. -
Influence of In-Wheel Motors on the Ride Comfort of Electric Vehicles
Influence of in-wheel motors on the ride comfort of electric vehicles R. Vos D&C 2010.041 Master’s thesis Coach(es): dr.ir. I.J.M. Besselink Supervisor: prof.dr. H. Nijmeijer Eindhoven University of Technology Department of Mechanical Engineering Dynamics & Control Eindhoven, July, 2010 Acknowledgements I would like to thank my supervisors, dr.ir. I.J.M. Besselink and prof.dr. H. Nijmeijer, for giving me the opportunity to work on this interesting subject and for their valuable advice and guidance throughout the project. I am grateful to Erwin Meinders, Paul van Oorschot and Toon van Gils for their aid and assistance during the experiments. Finally, I would like to thank my family, my girlfriend and all my friends for their support and encourage- ment to make this achievement possible. i ii Acknowledgements Abstract This report describes the influence of in-wheel motors on the ride comfort and road holding of electric ve- hicles. To this end, on-road experiments are performed using an ICE vehicle and simulations are performed with a model representing a battery electric vehicle. The experiments and simulations are performed by adding a mass of 15 kg to each individual wheel. This is determined based on the assumption that the ve- hicle has to be equipped with drive motors that have a combined power of 30 kW in order to overcome the road load during normal driving and based on the assumption that a specific motor output of approximately 1 kW/kg can be considered to be an appropriate guideline for permanent magnet brushless dc motors.