Pine As Fast Food: Foraging Ecology of an Endangered Cockatoo in a Forestry Landscape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................ -
Eyre Peninsula Aleppo Pine Management Plan
Eyre Peninsula NRM Board PEST SPECIES REGIONAL MANAGEMENT PLAN Pinus halepensis Aleppo pine This plan has a five year life period and will be reviewed in 2023. It is most abundant on southern Eyre Peninsula, Yorke Peninsula INTRODUCTION and Mid-North, and less frequent in upper Eyre Peninsula and the Murray Mallee. Aleppo pines appear absent from the Synonyms pastoral zone. Pinus halepensis Mill., Gard. Dict., ed. 8. n.8. (1768) Infestations occur in Waitpinga Conservation Park, Innes Pinus abasica Carrière, Traité Gén. Conif. 352 (1855) National Park, Hindmarsh Island and many small parks in the Pinus arabica Sieber ex Spreng., Syst. Veg. 3: 886 (1826) Adelaide Hills. Large infestations of Aleppo pines occur on lower Pinus carica D.Don, Discov. Lycia 294 (1841) Eyre Peninsula along the Flinders Highway and many roadside Pinus genuensis J.Cook, Sketch. Spain 2:236 (1834) reserves, Uley Wanilla, Uley South and Lincoln Basin (SA Water Pinus hispanica J.Cook, Sketch. Spain 2:337 (1834) Corporation). Pinus loiseleuriana Carrière, Traité Gén. Conif. 382 (1855) Pinus maritima Mill., Gard. Dict. ed. 8. n.7. (1768) Pinus parolinii Vis., Mem. Reale Ist. Veneto Sci. 6: 243 (1856) Pinus penicillus Lapeyr., Hist. Pl. Pyrénées 63 (1813) Pinus pseudohalepensis Denhardt ex Carrière, Traité Gén. Conif. 400 (1855). [8] Aleppo pine, Jerusalem pine, halepensis pine, pine [8]. Biology The Aleppo pine (Pinus halepensis Mill.) is a medium sized 25 - 30 metre tall, coniferous tree species. The needle like leaves are 6- 10 cm long, bright green and arranged in pairs. Conifers typically produce male and female cones that are retained in the trees canopy. -
Acacia Saligna RA
Risk Assessment: ………….. ACACIA SALIGNA Prepared by: Etienne Branquart (1), Vanessa Lozano (2) and Giuseppe Brundu (2) (1) [[email protected]] (2) Department of Agriculture, University of Sassari, Italy [[email protected]] Date: first draft 01 st November 2017 Subsequently Reviewed by 2 independent external Peer Reviewers: Dr Rob Tanner, chosen for his expertise in Risk Assessments, and Dr Jean-Marc Dufor-Dror chosen for his expertise on Acacia saligna . Date: first revised version 04 th January 2018, revised in light of comments from independent expert Peer Reviewers. Approved by the IAS Scientific Forum on 26/10/2018 1 2 3 4 5 6 7 1 Branquart, Lozano & Brundu PRA Acacia saligna 8 9 10 Contents 11 Summary of the Express Pest Risk Assessment for Acacia saligna 4 12 Stage 1. Initiation 6 13 1.1 - Reason for performing the Pest Risk Assessment (PRA) 6 14 1.2 - PRA area 6 15 1.3 - PRA scheme 6 16 Stage 2. Pest risk assessment 7 17 2.1 - Taxonomy and identification 7 18 2.1.1 - Taxonomy 7 19 2.1.2 - Main synonyms 8 20 2.1.3 - Common names 8 21 2.1.4 - Main related or look-alike species 8 22 2.1.5 - Terminology used in the present PRA for taxa names 9 23 2.1.6 - Identification (brief description) 9 24 2.2 - Pest overview 9 25 2.2.2 - Habitat and environmental requirements 10 26 2.2.3 Resource acquisition mechanisms 12 27 2.2.4 - Symptoms 12 28 2.2.5 - Existing PRAs 12 29 Socio-economic benefits 13 30 2.3 - Is the pest a vector? 14 31 2.4 - Is a vector needed for pest entry or spread? 15 32 2.5 - Regulatory status of the pest 15 33 2.6 - Distribution -
Contrasting Effects of Fire Severity on the Regeneration of Pinus Halepensis Mill
Article Contrasting Effects of Fire Severity on the Regeneration of Pinus halepensis Mill. and Resprouter Species in Recently Thinned Thickets Ruth García‐Jiménez, Marina Palmero‐Iniesta and Josep Maria Espelta * CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain; [email protected] (R.G.‐J.); [email protected] (M.P.‐I.) * Correspondence: [email protected]; Tel.: + 34‐9358‐1467‐1 Academic Editors: Xavier Úbeda and Victoria Arcenegui Received: 23 December 2016; Accepted: 21 February 2017; Published: 24 February 2017 Abstract: Many studies have outlined the benefits for growth and reproduction resulting from thinning extremely crowded young forests regenerating after stand replacing wildfires (“thickets”). However, scarce information is available on how thinning may influence fire severity and vegetation regeneration in case a new fire occurs. We investigated the relationship between thinning and fire severity in P. halepensis thickets, and the effects on the establishment of pine seedlings and resprouting vigour in resprouter species the year after the fire. Our results show a positive relationship between forest basal area and fire severity, and thus reserved pines in thinned stands suffered less fire damage than those in un‐thinned sites (respectively, 2.02 ± 0.13 vs. 2.93 ± 0.15 in a scale from 0 to 4). Ultimately, differences in fire severity influenced post‐fire regeneration. Resprouting vigour varied depending on the species and the size of individuals but it was consistently higher in thinned stands. Concerning P. halepensis, the proportion of cones surviving the fire decreased with fire severity. However, this could not compensate the much lower pine density in thinned stands and thus the overall seed crop was higher in un‐thinned areas. -
I Recent Investigations of Wood Properties and Growth Performance in Pin Us M Uricata
I 1 RECENT INVESTIGATIONS OF WOOD PROPERTIES AND GROWTH PERFORMANCE IN PIN US M URICATA SYNOPSIS There is a need in New Zealand for an exotic tree species which is better adapted than Pinus radiata to colder, higher- altitude sites and poorer soils but with similar growth rates and utilization characteristics and with good form. Pinus muricata of the northern blue-foliaged provenance promises to meet these requirements better than any other species. Most muricata pine planted in New Zealand has been of a more southerly green-foliaged provenance and this is in all respects much inferior to both radiata and blue muricata. This paper reviews the results of recent utilization studies and severai comparisons of growth of the blue provenance of muricata and radiata in stands of various ages in New Zealand Identity of races in New Zealand has been confused but this has now been resolved by turpentine analysis, and it is almost certain that the local blue provenance comes from Mendocino county. Blue-foliaged provenances proved to be much more frost- tolerant than either the green-foliaged provenances or radiata in a Californian experiment. Muricata has the same adult re- / sistance to Dothistroma pini needle blight as mdiata. Nursery characteristics of blue m~wicataare generally very 1 similar to radiata, though there are twice as many seeds per kilogram and seedling heights are about 20% less. Wood density in muricata shows a much smaller pith-to- bark densitv gradient than radiata though wlzole-tree density of both species is similar. The contrast between springwood and summerwood density in nzuricata is greater than in radiata, giving a less even-kxtured wood. -
Ecology of Forest Insect Invasions
Biol Invasions (2017) 19:3141–3159 DOI 10.1007/s10530-017-1514-1 FOREST INVASION Ecology of forest insect invasions E. G. Brockerhoff . A. M. Liebhold Received: 13 March 2017 / Accepted: 14 July 2017 / Published online: 20 July 2017 Ó Springer International Publishing AG 2017 Abstract Forests in virtually all regions of the world trade. The dominant invasion ‘pathways’ are live plant are being affected by invasions of non-native insects. imports, shipment of solid wood packaging material, We conducted an in-depth review of the traits of ‘‘hitchhiking’’ on inanimate objects, and intentional successful invasive forest insects and the ecological introductions of biological control agents. Invading processes involved in insect invasions across the insects exhibit a variety of life histories and include universal invasion phases (transport and arrival, herbivores, detritivores, predators and parasitoids. establishment, spread and impacts). Most forest insect Herbivores are considered the most damaging and invasions are accidental consequences of international include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and non-native herbivorous insects have virtually elimi- Martin Nun˜ez / Special issue on Biological Invasions in Forests nated their hosts, resulting in major changes in forest prepared by a task force of the International Union of Forest composition and ecosystem processes. Invasive preda- Research Organizations (IUFRO). tors (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the Electronic supplementary material The online version of this article (doi:10.1007/s10530-017-1514-1) contains supple- decline of native hosts. -
Uromycladium Acaciae, the Cause of a Sudden, Severe Disease Epidemic on Acacia Mearnsii in South Africa
Uromycladium acaciae, the cause of a sudden, severe disease Acacia mearnsii epidemic on in South Africa 1 2,3 1 4 Alistair R. McTaggart & Chanintorn Doungsa-ard & Michael J. Wingfield & Jolanda Roux Abstract A severe rust disease has caused extensive damage in 1988, from minor symptoms on the leaflets caused by its to plantation grown Acacia mearnsii trees in the KwaZulu- uredinial stage on A. mearnsii in South Africa. It has now Natal Province of South Africa since 2013. The symptoms are become a threat to plantations of A. mearnsii, with an altered characterized by leaf spots, petiole and rachis deformation, life cycle and increased disease severity. defoliation, gummosis, stunting of affected trees and die- back of seedlings. The cause of this new disease was identified Keywords Botrycephaleae . Emerging disease . Microcyclic using a combined morphological and DNA sequence ap- rust .Plantationforestry .Pucciniales .Taxonomy .Uredinales proach. Based on morphology, the rust fungus was identified as a species of Uromycladium. It formed powdery, brown telia on petioles, stems, leaves, seedpods and trunks of affected Introduction trees. The teliospores were two per pedicel and either lacked or had a collapsed sterile vesicle. Sequence data and morphol- Australian species of Acacia s. str. (Fabaceae, subfamily ogy showed that the collections from South Africa were con- Mimosoideae; from here referred to as Acacia)inSouth specific, however telia were not produced in all provinces. Africa are either considered weeds, such as A. dealbata and Uromycladium acaciae is the most suitable name for this rust A. saligna, or grown commercially for the production of tim- fungus, based on morphology and phylogenetic analyses of ber for pulp, and bark for tannins, glues and other products the internal transcribed spacer and large subunit regions of (Midgley and Turnbull 2003; Dobson and Feely 2002). -
Genomic Mapping in Pinus Pinaster (Maritime Pine) Using RAPD and Protein Markers
Heredity 74 (1995) 661—668 Received 14 September 1994 Genetical Society of Great Britain Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers C. PLOMIONff, N. BAHRMANt, C.-E. DURELt & D. M. O'MALLEY tINRA, Laboratoire de Génétique et Amelioration des arbres forestiers, BP45, F-33610 Cestas, France and Forest Biotechnology Group, Department of Forestry, North Carolina State University, Box 8008 Raleigh, NC 27695, US.A. Adetailed genomic map was constructed for one F1 individual of maritime pine, using randomly amplified polymorphic DNA (RAPD) and protein markers scored on megagametophytes of germinated seeds. Proteins allowed the localization of exclusively coding DNA in the large genome of this Pinus species, mapped with RAPD markers that essentially fail within repetitive (i.e. mostly noncoding) DNA. Dot blots experiments of 53 RAPD fragments showed that 89 per cent amplified from highly repetitive chromosomal regions. The map comprised 463 loci, including 436 RAPDs amplified from 142 10-mer oligonucleotide primers and 27 protein loci. Twelve major and one minor linkage groups were identified using a LOD score5 and a recombination fraction ® 0.30. A framework map was ordered with an interval support 4, covering 1860 cM which provided almost complete coverage of the maritime pine genome. The average distance between two framework markers was 8.3 cM; only one interval was larger than 30 cM. Protein loci were well distributed throughout the map. Their potential use as anchor points to join RAPD-based maps is discussed. Finally, the genomic maps of Arabidopsis and maritime pine were compared. Linkage groups were shown to have similar total map lengths on a chromosomal basis, despite a 57-fold difference in DNA content. -
BIRDS of PREY and the BAND-TAILED PIGEON on ISLA GUADALUPE, MEXICO JUAN-PABLO GALLO-REYNOSO, Centro De Investigación En Alimentación Y Desarrollo, A.C
BIRDS OF PREY AND THE BAND-TAILED PIGEON ON ISLA GUADALUPE, MEXICO JUAN-PABLO GALLO-REYNOSO, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Guaymas, Carretera a Varadero Nacional km 6.6, Col. Las Playitas, Guaymas, Sonora 85480, México; [email protected] ANA-LUISA FIGUEROA-CARRANZA, Área de Protección de Flora y Fauna Islas del Golfo de California, Oficina Regional Sonora, CONANP-SEMARNAT, Calle Isla del Peruano esquina con Calle Isla de la Rasa, Col. Lomas de Miramar, Guaymas, Sonora 85450, México ABSTRACT: We noted eight species of birds of prey at Isla Guadalupe during ten visits from 1991 to 2003. The most abundant species was the Burrowing Owl (Athene cunicularia), found throughout the island; second most numerous was the American Kestrel (Falco sparverius), widespread but uncommon. The frequency of the kestrel paralleled the population of mice, peaking 1992, a year of El Niño. We observed the Red-tailed Hawk (Buteo jamaicensis), Osprey (Pandion haliaetus), and Peregrine Falcon (Falco peregrinus) two or three times each, the Prairie Falcon (F. mexicanus) once. Our records of the Northern Harrier (Circus cyaneus) and Band-tailed Pigeon (Patagioenas fasciata) are the first for Isla Guadalupe. Early publications on the birds of Isla Guadalupe (Gaylord 1897, Anthony 1925, Hanna 1925) were devoted largely to the endemic species that “fas- cinated biologists” (Jehl and Everett 1985). Thus the history of some of the taxa now extinct, such as the Guadalupe Caracara (Caracara lutosa) are well documented, but some others remain scarcely known. Luna-Mendoza et al. (2005) and Quintana-Barrios et al. (2006) summarized the island’s avifauna most recently. -
46 October 2019
Friends of Sturt Gorge Newsletter No 46 : October 2019 This edition: Awards, Events, Cockatoos, Orchids, Weather…. As well as the presentations and speeches 20th Anniversary which acknowledged the contributions Award volunteers make to the natural environment and local communities, a Albert Kuster range of tours and workshops were also conducted, topped off by some delicious n Sunday 29th September Adelaide food! O and Mount Lofty Ranges environmental volunteers were invited to Marble Hill Estate for the annual celebration event put on by Parks SA. Larry Resch, Albert Kuster, Martin Bentley, Ruth Simpson, and Brian and Joanne Blaylock represented the Friends of Sturt Gorge. Larry accepted the 20 year anniversary award on behalf of FoSG. Marble Hill Residence under restoration Larry Resch accepting the FoSG award flanked by the CEO of DEW (on the right), the Local MP (left) and the Parks SA representative (rear) Tasty Paella was served for lunch! There was some discussion about a Morning Tea with the walkway connection across the Sturt Minister Gorge dam wall and Aboriginal naming of locations, trees and plants. Liz Sawyer With our Patron we discussed the need for morning tea with the Minister for the 19th century ruin near Magpie Creek to A Environment and Water, David be re-capped, given the Mitcham Council Spiers was held at the Belair National grant application was declined. It was Park Volunteer Centre on the 5th July agreed to plan a visit to the site with Pam. 2019. Sam Duluk, the State Member for Further networking came up with two Waite also attended. offers of assistance with our Aboriginal Friends of Parks members who were in representation in the Gorge. -
CURRICULUM VITAE Matthew P. Ayres
CURRICULUM VITAE Matthew P. Ayres Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 (603) 646-2788, [email protected], http://www.dartmouth.edu/~mpayres APPOINTMENTS Professor of Biological Sciences, Dartmouth College, 2008 - Associate Director, Institute of Arctic Studies, Dartmouth College, 2014 - Associate Professor of Biological Sciences, Dartmouth College, 2000-2008 Assistant Professor of Biological Sciences, Dartmouth College, 1993 to 2000 Research Entomologist, USDA Forest Service, Research Entomologist, 1993 EDUCATION 1991 Ph.D. Entomology, Michigan State University 1986 Fulbright Fellowship, University of Turku, Finland 1985 M.S. Biology, University of Alaska Fairbanks 1983 B.S. Biology, University of Alaska Fairbanks PROFESSIONAL AFFILIATIONS Ecological Society of America Entomological Society of America PROFESSIONAL SERVICES Member, Board of Editors: Ecological Applications; Member, Editorial Board, Population Ecology Referee: (10-15 manuscripts / year) American Naturalist, Annales Zoologici Fennici, Bioscience, Canadian Entomologist, Canadian Journal of Botany, Canadian Journal of Forest Research, Climatic Change, Ecography, Ecology, Ecology Letters, Ecological Entomology, Ecological Modeling, Ecoscience, Environmental Entomology, Environmental & Experimental Botany, European Journal of Entomology, Field Crops Research, Forest Science, Functional Ecology, Global Change Biology, Journal of Applied Ecology, Journal of Biogeography, Journal of Geophysical Research - Biogeosciences, Journal of Economic -
PRESENCE of the FAMILY NEVRORTHIDAE (NEUROPTERA) in the IBERIAN PENINSULA Oscar Gavira1, Salvador Sánchez2, Patricia Carrasco
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 51 (31/12/2012): 217‒220. PRESENCE OF THE FAMILY NEVRORTHIDAE (NEUROPTERA) IN THE IBERIAN PENINSULA Oscar Gavira1, Salvador Sánchez2, Patricia Carrasco, Javier Ripoll & Salvador Solís 1 Corresponding author: [email protected] 2 Asociación Cultural Medioambiental Jara. C/Príncipe de Asturias nº1-bis, Local 2, 29100 Coín (Málaga, España). Abstract: The first record of the family Nevrorthidae is reported from the Iberian Peninsula. This finding extends the known dis- tribution of the family in the Mediterranean region and represents its westernmost known population. The specimens found are larval forms, and while they confirm the presence of the family in the area, do not permit to identify the species. The locality is a mountain stream with permanent clean water belonging to a coastal peridotitic range (Sierra Alpujata, Málaga, Spain) in an ex- cellent state of conservation. Key words: Neuroptera, Nevrorthidae, chorology, ecology, Mediterranean basin. Presencia de la familia Nevrorthidae (Neuroptera) en la Península Ibérica Resumen: Se presenta la primera cita de la familia Nevrorthidae en la Península Ibérica. Este hallazgo amplía la distribución conocida de la familia en la cuenca Mediterránea y representa la población más occidental conocida. Los ejemplares encon- trados corresponden a formas larvarias, y aunque confirman la presencia de esta familia en el territorio no permiten identificar la especie. Estos ejemplares se localizaron en un arroyo de montaña de aguas limpias y permanentes, en una sierra litoral pe- ridotítica (Sierra Alpujata, Málaga, España) con un excelente estado de conservación de los ecosistemas. Palabras clave: Neuroptera, Nevrorthidae, corología, ecología, cuenca mediterránea.