Bode Plots by Hand and by Matlab
Total Page:16
File Type:pdf, Size:1020Kb
Bode Plots by hand and by MatLab 1. Bode Plots by Hand Bode Phase Plots Page 3 2. Bode Plots by MatLab Here is an example of doing Bode Plots with Matlab.
Rs + + Vin- + Vout Rg Cgs Vgs gmVgs rd Rout - -
Assume you have a small signal circuit like this.
2.1. Find Vout/Vin Assume you have the following parameters and try to draw the bode plots. First, you need to find out Vout/Vin.
A W V 3V ,V 1V , C 100 , 20, 0, GSQ th n ox V 2 L Rs 10k, Rg 8x105 , Rout 1.82k,Cgs 5 fF 1 1 Rg // Rg // Vgs jwCgs jwCgs 8x105 1 1 5 5 Vin Rs Rg // Rs Rg // 8.1x10 jw(4x10 ) jwCgs jwCgs W gm C ( )(V V ) 4m1 n ox L GSQ th 1 rd I DS Vout 8x105 gm Vgs(rd // Rout) 4m ( )( //1.82k) Vin 8.1x105 jw(4x105 ) Vout 5.82x106 Vin 8.1x105 jw(4x105 )
2.2. Plot the Bode Plot with MatLab Assume that you wanted to use Matlab in order to obtain Bode magnitude and phase plots for the following transfer function. The s is jw (j omega). H(s) = Z(s)/P(s), where Z(s) = [2.5329e-14*s^2 + 1.5915e-4*s + 1] P(s) = [2.5329e-20*s^2 + 1.5915e-7*s + 1] You would need to type the following: >> num = [2.5329e-14 1.5915e-4 1]; >> den = [2.5329e-20 1.5915e-7 1]; >> sys = tf(num,den) >> bode(sys,{1,1e15}) Page 4 >> num = 5.82e6; %%the numerator den = [4e-5 8.1e5]; %%the denominator sys = tf(num, den) %%the transfer function bode(sys,{1,1e15}) %%plot the magnitude and phase of the transfer function %% The frequency range is 1 rad/s to 1e15 rad/s
Transfer function: %Output 5.82e006 ------4e-005 s + 810000
B o d e D i a g r a m 2 0
0 ) B d (
- 2 0 e d u t i
n - 4 0 g a M - 6 0
- 8 0 0 ) g e d ( - 4 5 e s a h P
- 9 0 0 5 1 0 1 5 1 0 1 0 1 0 1 0 F r e q u e n c y ( r a d / s e c )
Page 5 3. Bode Plot by Hand Example 3.1 The Transfer Function Say we want to plot the following transfer function by hand. Vout 5.82x106 Vin 8.1x105 jw(4x105 ) First, we rearrange the numbers Vout 7.185 jw Vin 1 4.938x1011 Notice when omega w equals to 4.938 x 1011 , it becomes a corner in the bode plot. Also, if w is Vout close to zero, is just 7.185. Vin 3.1 Magnitude Plot Just adding all the plots. 20 log(7.185) = 17.126.
For 7.185 17.126
+
4.938x1011 jw For1 4.938x1011
Page 6 3.2 Phase Plot Just adding all the plots. Vout 7.185 jw Vin 1 4.938x1011
For 7.185
+
4.938x1011
jw For1 4.938x1011
4. Reference Original EE 105 Discussion Notes from Meghdad Hajimorad (“Amin”) Last Modified by: Bill Hung Date: 5 August 2006
Page 7