Bode Plots by Hand and by Matlab

Bode Plots by Hand and by Matlab

<p> Bode Plots by hand and by MatLab 1. Bode Plots by Hand Bode Phase Plots Page 3 2. Bode Plots by MatLab Here is an example of doing Bode Plots with Matlab.</p><p>Rs + + Vin- + Vout Rg Cgs Vgs gmVgs rd Rout - -</p><p>Assume you have a small signal circuit like this.</p><p>2.1. Find Vout/Vin Assume you have the following parameters and try to draw the bode plots. First, you need to find out Vout/Vin.</p><p>A W V  3V ,V 1V ,  C 100 ,  20,  0, GSQ th n ox V 2 L Rs 10k, Rg  8x105 , Rout 1.82k,Cgs  5 fF 1 1 Rg // Rg // Vgs jwCgs jwCgs 8x105    1 1 5 5 Vin Rs  Rg // Rs  Rg // 8.1x10  jw(4x10 ) jwCgs jwCgs W gm   C ( )(V V )  4m1 n ox L GSQ th 1 rd    I DS Vout 8x105  gm Vgs(rd // Rout)  4m ( )( //1.82k) Vin 8.1x105  jw(4x105 ) Vout 5.82x106  Vin 8.1x105  jw(4x105 )</p><p>2.2. Plot the Bode Plot with MatLab Assume that you wanted to use Matlab in order to obtain Bode magnitude and phase plots for the following transfer function. The s is jw (j omega). H(s) = Z(s)/P(s), where Z(s) = [2.5329e-14*s^2 + 1.5915e-4*s + 1] P(s) = [2.5329e-20*s^2 + 1.5915e-7*s + 1] You would need to type the following: >> num = [2.5329e-14 1.5915e-4 1]; >> den = [2.5329e-20 1.5915e-7 1]; >> sys = tf(num,den) >> bode(sys,{1,1e15}) Page 4 >> num = 5.82e6; %%the numerator den = [4e-5 8.1e5]; %%the denominator sys = tf(num, den) %%the transfer function bode(sys,{1,1e15}) %%plot the magnitude and phase of the transfer function %% The frequency range is 1 rad/s to 1e15 rad/s</p><p>Transfer function: %Output 5.82e006 ------4e-005 s + 810000</p><p>B o d e D i a g r a m 2 0</p><p>0 ) B d (</p><p>- 2 0 e d u t i</p><p> n - 4 0 g a M - 6 0</p><p>- 8 0 0 ) g e d ( - 4 5 e s a h P</p><p>- 9 0 0 5 1 0 1 5 1 0 1 0 1 0 1 0 F r e q u e n c y ( r a d / s e c )</p><p>Page 5 3. Bode Plot by Hand Example 3.1 The Transfer Function Say we want to plot the following transfer function by hand. Vout 5.82x106  Vin 8.1x105  jw(4x105 ) First, we rearrange the numbers Vout 7.185  jw Vin 1 4.938x1011 Notice when omega w equals to 4.938 x 1011 , it becomes a corner in the bode plot. Also, if w is Vout close to zero, is just 7.185. Vin 3.1 Magnitude Plot Just adding all the plots. 20 log(7.185) = 17.126.</p><p>For 7.185 17.126</p><p>+</p><p>4.938x1011 jw For1 4.938x1011</p><p>Page 6 3.2 Phase Plot Just adding all the plots. Vout 7.185  jw Vin 1 4.938x1011</p><p>For 7.185</p><p>+ </p><p>4.938x1011</p><p> jw For1 4.938x1011</p><p>4. Reference Original EE 105 Discussion Notes from Meghdad Hajimorad (“Amin”) Last Modified by: Bill Hung Date: 5 August 2006</p><p>Page 7</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us