Characterization and Regulation of Kv1.5-Kvβ1.3 Complex

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Regulation of Kv1.5-Kvβ1.3 Complex UNIVERSIDAD AUTÓNOMA DE MADRID Departamento de Bioquímica Characterization and regulation of Kv1.5-Kvβ1.3 complex. ÁLVARO MACÍAS MARTÍNEZ Madrid 2014 Departamento de Bioquímica Facultad de Medicina UNIVERSIDAD AUTÓNOMA DE MADRID Characterization and regulation of Kv1.5-Kvβ1.3 complex. Memoria presentada para optar al grado de Doctor con Mención Internacional por la Universidad Autónoma de Madrid presenta el Licenciado en Biología: ÁLVARO MACÍAS MARTÍNEZ Bajo la dirección de: Dra. Carmen Valenzuela Miranda Dra. Teresa González Gallego Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM) Madrid, 2014 El trabajo descrito en la presente Tesis Doctoral ha sido llevado a cabo en el Departamento de Modelos Experimentales de Enfermedades Humanas del Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM) y ha sido financiado por los siguientes proyectos de investigación: Mecanismos implicados en la regulación por kinasas del ensamblaje entre Kvα1.5 y Kvβ1.3. CICYT (SAF2007-65868). 2007-2010. Investigador principal: Carmen Valenzuela Miranda. Red Temática de Investigación Cooperativa RECAVA. FIS (RD06/0014/0006). 2007-2010. Investigador principal: Lisardo Boscá Gomar. Modulación adrenérgica de los canales Kv1.5-Kvβ1.3 expresados en diferentes tipos de células cardiovasculares. CICYT (SAF2010- 14916) 2011-2014. Investigador principal: Carmen Valenzuela Miranda. Red de Investigación Cardiovascular. FIS (RD12/0042/0019). 2012-2014. Investigador principal: Carmen Valenzuela Miranda. Además, la realización de esta Tesis Doctoral ha sido posible gracias al disfrute de una beca predoctoral de la Junta de Ampliación de Estudios (JAE-Predoc), del Consejo Superior de Investigaciones Científicas. A mi familia, a ti que lees estas líneas y sobre todo, a mis chicas, Sonia y Emma, mis pilares, mi equilibrio, mi todo. “-¿Y piensas pasarte el resto de tu vida encerrado entre estas cuatro paredes, tomando notas y alimentándote a base de bocadillos? -Tal vez algún día encuentre las respuestas que busco. Lo que si tengo muy claro, es que si no estoy aquí, nunca las encontraré. […] Si tengo que pasarme el resto de mi vida aquí encerrado para conseguir que una sola persona no sufra como mi madre sufrió por culpa de aquel maldito cáncer, o un solo niño no vea morir a su madre como yo vi morir a la mía, puedes estar segura de que aquí me quedaré. […] -¿Realmente confías en conseguir algo positivo? -Aún es pronto para saberlo. Cuando inicias una investigación de este tipo se te ofrecen mil caminos, y el problema estriba en que pronto o tarde tienes que decidirte por uno sin saber hacia dónde conduce. Tal vez no lleve a ninguna parte y hayas perdido media vida, pero ese esfuerzo nunca resulta totalmente inútil, puesto que sirve para indicar a los que vienen detrás que ésa era una vía sin salida. Los grandes descubrimientos suelen hacerse de ese modo: eliminando rutas erróneas hasta que se encuentra la correcta.” Alberto Vázquez-Figueroa “El Señor de las Tinieblas”, 2001 Agradecimientos No me puedo creer que ya haya llegado este momento… escribir los Agradecimientos de mi Tesis Doctoral… Increíble!!!! Quién me iba a decir que iba a llegar este momento cuando estaba en el colegio, aunque, ya por aquel entonces sabía que algo relacionado con las Ciencias Naturales era ‘lo mío’. Sonrío siempre al recordar una de mis mayores revelaciones y lo que sin duda alguna grabó en mí la idea de estudiar Biología, sin importarme mucho las garantías de futuro laboral que acompañaran a esa decisión… “comprender el mecanismo físico-químico que le permite al jabón quitar la grasa de las manos, pero al mismo tiempo ser compatible con el agua”. Gracias a Antonio Pastor por haberme transmitido la ilusión por saber, por ir más allá, sin duda alguna a ti te debo ser Biólogo hoy en día. Recuerdo como mi padre, pensando en mi futuro, intentaba que estudiara otra carrera con más salida como medicina pero pocas cosas he tenido tan claras en mi vida, aunque me arrepintiese, necesitaba saber lo que era estudiar Biología. Tras los años en la universidad, y coger experiencia en el trabajo de laboratorio, me llegó la oportunidad ‘de refilón’ de ampliar mis conocimientos en alguna materia y/o técnica que no pudiera aprender en el laboratorio que ya estaba. De este modo, me tropecé con el laboratorio de electrofisiología de la Dra. Carmen Valenzuela Miranda, y como aquello era algo que en la carrera siempre me había atraído y con la simple intención de saber un poquito más, decidí atreverme a ponerme en contacto con ella. Aún recuerdo la primera vez que entré en el C.S.I.C. y, aun tremendamente nervioso por el simple hecho de estar entre aquellas paredes y delante de ‘Investigadores Científicos de verdad’, Carmen me hablaba sobre su mundo (la electrofisiología cardiovascular) con esa naturalidad y esa pasión con la que sólo ella sabe hacerlo. Tras dejarme entrar en su casa, porque el laboratorio llega a convertirse en eso, consiguió que me enamorara de este campo y conseguimos una beca para poder hacer Mi Tesis. Mil gracias, Carmen, por dejarme seguir siendo ‘El Lechón’ del laboratorio, espero serlo siempre; por tu apoyo incondicional y confianza en mí, por enseñarme no sólo ciencia sino humanidad y respeto hacia los demás y hacia nosotros mismos, y por supuesto, por transmitirme el respeto y la admiración a este trabajo… gracias de corazón!!! Atrás quedan ya cuatro años y medio de congresos, risas, aprendizaje, momentos muy buenos y otros no tanto… gracias por todos ellos. También, por supuesto, a la Dra. Teresa González Gallego (‘Doc!’) porque los inicios nunca fueron fáciles y a ti te “tocó” estar codo con codo conmigo cuando siendo Lechón-Lechón entré en el labo. Gracias por tu entrega, por tu apoyo y por la pasión que demuestras en cada cosa que haces. Gracias a ambas por todo lo vivido en todos estos años, han hecho de mí una persona nueva. Espero, siguiendo el consejo de Valentín Fuster, seguir teniéndoos de tutoras, y amigas, el resto de mi carrera. Por supuesto, a todas las componentes del laboratorio. A la Dra. Miren David, tú me ensañaste la perseverancia y el trabajo duro, a elaborar todos los controles posibles aunque eso suponga cuadruplicar (y en algunos casos mucho más) el volumen de trabajo, y por supuesto, el amor por el PowerPoint. Gracias por tu sentido del humor y por tus críticas siempre constructivas. A, la ya Doctora (qué fuerte), Cristina Moreno Vadillo, juntos hemos vivido casi todo el camino de la Tesis, con momentos buenos y otros no tanto. Siempre hemos intentado conjugar el trabajo duro con el mejor ambiente y, a mi juicio, si no lo hemos conseguido hemos estado muy cerca. Ojalá el tiempo y la ciencia nos vuelvan a juntar en algún congreso en los que otros becarios nos señalarán con el dedo y dirán: Mira, no son ellos los del trabajo… Alicia y Ángela, las últimas en entrar al laboratorio pero que desde el principio conseguisteis integraros de un modo admirable. Gracias chicas por los momentos de risas, de mucho curro, las tertulias del café, por todo vuestro apoyo. Cada día estoy más contento, si es que influyó en algo, de haberos soltado el chaparrón de ‘Lo bueno y lo malo de este laboratorio (por ser de electrofisiología)’. Gracias también a aquellas personas que pasaron por el laboratorio Gema, Ulyana, Carmen, Mariela o Najib, de todos he aprendido algo y habéis cambiado algo dentro de mí, gracias por dejarme compartir vuestro tiempo conmigo. A todos y cada uno de los compañeros del Instituto con los que cada día he compartido uno de los mejores momentos del día… la hora de comer! Gracias a Mario (mi gordi), Antonio, María, Eva, Rafa, Ale, Ana Rosa, Blanca, Pepa, Toño, Miryam, Daniela… una gran familia científica. Aún tratando la ciencia como un tema tabú en la comida (que para eso es de descanso), habéis hecho que este camino sea muuucho más fácil. Gracias por todos esos momentos de risas hasta perder el aliento, el apoyo en los momentos de decadencia, por los chistes (unos buenos, y otros no tanto)… por todo. De verdad, esta Tesis tampoco habría sido posible sin vosotros. A todo el laboratorio 1.9, gracias por dejarme ser uno más. Gracias a Jose (el otro macho alpha), Marina, Sandra, Elena, Diana… mi otro laboratorio. Gracias por enseñarme que ser grandes científicos y mejores personas no está reñido. Después de conoceros creo que otra ciencia es posible. Sois, todas (admítelo Jose, somos una más) y cada una de vosotras, extraordinarias. A ‘Los de la Complu’, es decir, al grupo de los Dres. Francisco Pérez-Vizcaíno y Ángel Cogolludo, a Quique, Javi, Bianca, Laura, Carmen, Dani y Raquelle. Gracias por abrirme siempre las puertas de vuestra casa, por todas las colaboraciones realizadas, hayan llegado o no a buen término, porque siempre se puede contar con vosotros, pero sobre todo porque es un placer haber compartido celebraciones profesionales y personales. A los Dres. Pilar de la Peña, Francisco Barros, Walter Stühmer y Luis A. Pardo, y a vuestros respectivos laboratorios, por supuesto. Gracias a todos vosotros por abrirme las puertas de vuestra casa y enseñarme tantas y tantas cosas, personales y profesionales. Espero poder seguir aprendiendo de vosotros siempre que me lo permitáis. De vuestros laboratorios me llevo muy buenos recuerdos y grandes amigos. A todos vosotros, Jorge, Araceli, Camilo, Joassia, Piotrek, Juan Carlos, Vincenzo, Ulrike, Diana, Adam, Estefanía, Rayco,… espero veros pronto y recordar viejos tiempos. Gracias a todos por haberme hecho sentir como un miembro más de vuestra familia. No puedo olvidarme de mis amigos de siempre, los de fuera del labo, los de toda la vida. Juanan y Alex, muy diferentes pero muy iguales a la vez, siempre dispuestos a hacer lo que sea necesario para introducir momentos relajados en los más tensos de la vida; gracias por hacerme la vida más agradable y por apoyar 'al niño' en todas las cosillas raras que hace.
Recommended publications
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S1. Prioritization of Candidate FPC Susceptibility Genes by Private Heterozygous Ptvs
    Supplementary Table S1. Prioritization of candidate FPC susceptibility genes by private heterozygous PTVs Number of private Number of private Number FPC patient heterozygous PTVs in heterozygous PTVs in tumors with somatic FPC susceptibility Hereditary cancer Hereditary Gene FPC kindred BCCS samples mutation DNA repair gene Cancer driver gene gene gene pancreatitis gene ATM 19 1 - Yes Yes Yes Yes - SSPO 12 8 1 - - - - - DNAH14 10 3 - - - - - - CD36 9 3 - - - - - - TET2 9 1 - - Yes - - - MUC16 8 14 - - - - - - DNHD1 7 4 1 - - - - - DNMT3A 7 1 - - Yes - - - PKHD1L1 7 9 - - - - - - DNAH3 6 5 - - - - - - MYH7B 6 1 - - - - - - PKD1L2 6 6 - - - - - - POLN 6 2 - Yes - - - - POLQ 6 7 - Yes - - - - RP1L1 6 6 - - - - - - TTN 6 5 4 - - - - - WDR87 6 7 - - - - - - ABCA13 5 3 1 - - - - - ASXL1 5 1 - - Yes - - - BBS10 5 0 - - - - - - BRCA2 5 6 1 Yes Yes Yes Yes - CENPJ 5 1 - - - - - - CEP290 5 5 - - - - - - CYP3A5 5 2 - - - - - - DNAH12 5 6 - - - - - - DNAH6 5 1 1 - - - - - EPPK1 5 4 - - - - - - ESYT3 5 1 - - - - - - FRAS1 5 4 - - - - - - HGC6.3 5 0 - - - - - - IGFN1 5 5 - - - - - - KCP 5 4 - - - - - - LRRC43 5 0 - - - - - - MCTP2 5 1 - - - - - - MPO 5 1 - - - - - - MUC4 5 5 - - - - - - OBSCN 5 8 2 - - - - - PALB2 5 0 - Yes - Yes Yes - SLCO1B3 5 2 - - - - - - SYT15 5 3 - - - - - - XIRP2 5 3 1 - - - - - ZNF266 5 2 - - - - - - ZNF530 5 1 - - - - - - ACACB 4 1 1 - - - - - ALS2CL 4 2 - - - - - - AMER3 4 0 2 - - - - - ANKRD35 4 4 - - - - - - ATP10B 4 1 - - - - - - ATP8B3 4 6 - - - - - - C10orf95 4 0 - - - - - - C2orf88 4 0 - - - - - - C5orf42 4 2 - - - -
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • RNA Splicing in the Transition from B Cells
    RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress This information is current as of September 24, 2021. Ashley M. Nelson, Nolan T. Carew, Sage M. Smith and Christine Milcarek J Immunol 2018; 201:3073-3083; Prepublished online 8 October 2018; doi: 10.4049/jimmunol.1800557 Downloaded from http://www.jimmunol.org/content/201/10/3073 Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180055 http://www.jimmunol.org/ Material 7.DCSupplemental References This article cites 44 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/201/10/3073.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress Ashley M.
    [Show full text]
  • Genetics of Migraine - Is There Any Progress?
    Journal of Neurology & Stroke Genetics of Migraine - Is There any Progress? Abstract Review Article Nowadays migraine ranks 9th in the list of leading causes of disability among Volume 7 Issue 4 - 2017 population. In Russia migraine prevalence is two times higher than the world one-century history of studying migraine, science until now cannot explain many index and inflicts a considerable damage on the state economy. Despite almost – the therapy of patients with migraine is not sufficiently effective. Today one cases of attack occurrence. It causes difficulties both for diagnosis and treatment of the investigation directions is searching of migraine biomarkers confirming diagnosis. In this review we attempted to generalize the results of available works 1Faculty of Biology of Lomonosov Moscow State University, Keywords:targeted at searching genetic markers of migraine. Russia 2University diagnostic laboratory, Russia Migraine; Gene; Polymorphism 3University Headache Clinic, Russia 4Department of Neuroscience, I.M.Sechenov First Moscow State Medical University, Russia Introduction 5Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russia 6I.I. Mechnikov Research Institute for Vaccines and Sera RAMS, Russia Migraine is now one of the leading causes of disability (ranks 7Department of neurology and neurosurgery, I.M. Sechenov 9th according to the WHO), comparable to such diseases as First Moscow State Medical University, Russia cancer, diabetes, cardiovascular diseases and others. In the female *Corresponding author: prevalencepopulation, inmigraine-related the world for 1 disability year in the ratio adult promotes population this disease ranges to 3rd place. According to epidemiological studies, migraine Eugene Klimov, Faculty of Biology of Lomonosov Moscow State University, Russia, Email: on average from 10.2% [1] to 14.7 % [2].
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • RNA-Seq Data Analysis of a Rodent Model of Adolescent Binge Drinking Reveals Pathways
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365841; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RNA-Seq data analysis of a rodent model of adolescent binge drinking reveals pathways and candidate genes involved in neuronal remodeling and neuroimmune activation Alejandro Q. Nato, Jr.1,†, Hafiz Ata Ul Mustafa1*, Riya K. Patel1*, Hannah G. Sexton1,2, Scott D. Moore3,4, James Denvir1, Donald A. Primerano1, and Mary-Louise Risher1,2,3,† 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA 2Hershel ‘Woody’ Williams Veteran Affairs Medical Center, Huntington WV, USA 3Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA 4Durham Veteran Affairs Medical Center, Durham, NC, USA *equal contribution †Addresses for correspondence: Alejandro Q. Nato, Jr., 1700 Third Ave (BBSC 336M), Huntington, WV 25755 Tel: 304 6963562 Fax: 304 6967207 Email: [email protected] Mary-Louise Risher, 1700 Third Ave (BBSC 336L), Huntington, WV 25755 Tel: 304 6963894 Fax: 304 6967207 Email: [email protected] Running titles: Identification of candidate genes for alcohol use disorder using RNA-seq data; Pathway functional and network enrichment analyses of RNA-Seq data in alcohol use disorder bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365841; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Potassium Channels and Their Potential Roles in Substance Use Disorders
    International Journal of Molecular Sciences Review Potassium Channels and Their Potential Roles in Substance Use Disorders Michael T. McCoy † , Subramaniam Jayanthi † and Jean Lud Cadet * Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, USA; [email protected] (M.T.M.); [email protected] (S.J.) * Correspondence: [email protected]; Tel.: +1-443-740-2656 † Equal contributions (joint first authors). Abstract: Substance use disorders (SUDs) are ubiquitous throughout the world. However, much re- mains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their ex- pression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs. Keywords: alcohol; cocaine; methamphetamine; opioids; pharmacotherapy Citation: McCoy, M.T.; Jayanthi, S.; Cadet, J.L.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Mouse Neuronal Ion Channels Cat. no. 330231 PAMM-036ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Mouse Neuronal Ion Channels RT² Profiler PCR Array was developed to profile expression of a panel of 84 genes encoding neuroscience-related ion channels and transporters. The genes represented on the array are listed below, grouped according to their functional and structural features. Included are calcium channels, potassium channels, sodium channels, chloride channels, and transporters. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to the neuronal ion channels and transporters with this array.
    [Show full text]
  • Exploring the Mitochondrial Function in Muscle and Molecular Dysregulation in Cerebellum in a Mouse Model for ARCA2, a Recessive
    Exploring the mitochondrial function in muscle and molecular dysregulation in cerebellum in a mouse model for ARCA2, a recessive ataxia with coenzyme Q10 deficiency Tiphaine Jaeg To cite this version: Tiphaine Jaeg. Exploring the mitochondrial function in muscle and molecular dysregulation in cere- bellum in a mouse model for ARCA2, a recessive ataxia with coenzyme Q10 deficiency. Neurobiology. Université de Strasbourg, 2017. English. NNT : 2017STRAJ082. tel-02003420 HAL Id: tel-02003420 https://tel.archives-ouvertes.fr/tel-02003420 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE Institut de Génétique et Biologie Moléculaire et Cellulaire THÈSE présentée par : Tiphaine JAEG soutenue le : 03 octobre 2017 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie Exploring the mitochondrial function in muscle and molecular dysregulation in cerebellum in a mouse model
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]