Limiting Values and Functional and Difference Equations †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1. -
Overpartitions and Functions from Multiplicative Number Theory
U.P.B. Sci. Bull., Series A, Vol. 83, Iss. 3, 2021 ISSN 1223-7027 OVERPARTITIONS AND FUNCTIONS FROM MULTIPLICATIVE NUMBER THEORY Mircea Merca1 Let α and β be two nonnegative integers such that β < α. For an arbi- trary sequence fa g of complex numbers, we consider the generalized Lambert series n n>1 P αn−β αn−β n 1 anq =(1 − q ) in order to investigate linear combinations of the form P > S(αk − β; n)ak, where S(k; n) is the total number of non-overlined parts equal k>1 to k in all the overpartitions of n. The general nature of the numbers an allows us to provide connections between overpartitions and functions from multiplicative number theory. Keywords: partitions, Lambert series, theta series MSC2020: 11P81 05A19. 1. Introduction A partition of a positive integer n is a sequence of positive integers whose sum is n. The order of the summands is unimportant when writing the partitions of n, but for consistency, a partition of n will be written with the summands in a nonincreasing order [2]. An overpartition of a positive integer n is a partition of n in which the first occurrence of a part of each size may be overlined or not [6]. Let p(n) denote the number of overpartitions of an integer n. For example, p(3) = 8 because there are 8 overpartitions of 3: (3); (3)¯ ; (2; 1); (2¯; 1); (2; 1)¯ ; (2¯; 1)¯ ; (1; 1; 1); (1¯; 1; 1): Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, the generating function for overpartitions is given by 1 X (−q; q)1 p(n)qn = : (q; q) n=0 1 Here and throughout this paper, we use the following customary q-series notation: ( 1; for n = 0, (a; q)n = (1 − a)(1 − aq) ··· (1 − aqn−1); for n > 0; (a; q)1 = lim (a; q)n: n!1 Because the infinite product (a; q)1 diverges when a 6= 0 and jqj > 1, whenever (a; q)1 appears in a formula, we shall assume jqj < 1. -
On the Values of a Class of Dirichlet Series at Rational Arguments
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 4, April 2010, Pages 1223–1230 S 0002-9939(09)10171-5 Article electronically published on December 4, 2009 ON THE VALUES OF A CLASS OF DIRICHLET SERIES AT RATIONAL ARGUMENTS K. CHAKRABORTY, S. KANEMITSU, AND H.-L. LI (Communicated by Ken Ono) Dedicated to Professor Eiichi Bannai on his sixtieth birthday, with great respect and friendship Abstract. In this paper we shall prove that the combination of the gen- eral distribution property and the functional equation for the Lipschitz-Lerch transcendent capture the whole spectrum of deeper results on the relations be- tween the values at rational arguments of functions of a class of zeta-functions. By Theorem 1 and its corollaries, we can cover all the previous results in a rather simple and lucid way. By considering the limiting cases, we can also deduce new striking identities for Milnor’s gamma functions, among which is the Gauss second formula for the digamma function. 1. Introduction and the finite value case Srivastava [S2] (cf. also Srivastava and Choi [SC], pp. 336–344) gives two simpler proofs of interesting results of Cvijovi´c and Klinowski [CK1] on the finite expression for the values of a Bernoulli polynomial at rational arguments in terms of the values of the Hurwitz zeta-function at integer arguments with rational values for the perturbation. The first proof uses the Fourier series for the periodic Bernoulli polynomial and the formula for the decomposition into residue classes. The second proof uses the functional equation for the partial zeta-function q p 2Γ (s) πs 2πap a (1.1) ζ 1 − s, = cos − ζ s, q (2πq)s 2 q q a=1 ([SC, (8), p. -
Generating Special Arithmetic Functions by Lambert Series Factorizations
Volume 14, Number 1, Pages 31{45 ISSN 1715-0868 GENERATING SPECIAL ARITHMETIC FUNCTIONS BY LAMBERT SERIES FACTORIZATIONS MIRCEA MERCA AND MAXIE D. SCHMIDT Abstract. In this collaborative article, we summarize the known use- ful and interesting results and formulas we have discovered so far. Sum- marizing results from two related articles by Merca and Schmidt, we arrive at so-termed Lambert series factorization theorems. We unify the matrix representations that underlie two of our separate papers, and which commonly arise in identities involving partition functions and other functions generated by Lambert series. We provide a number of properties and open problems related to the inverse matrix entries de- fined in Schmidt's article and the Euler partition function p(n) which we prove through our new results unifying the expansions of the Lambert series factorization theorems within this article. 1. Introduction 1.1. Lambert series factorization theorems. We consider recurrence relations and matrix equations related to Lambert series expansions of the form [4, x27.7] [1, x17.10] n X anq X (1.1) = b qm; jqj < 1; 1 − qn m n≥1 m≥1 + + for prescribed arithmetic functions a : Z ! C and b : Z ! C where bm = P djm ad. There are many well-known Lambert series for special arithmetic functions of the form in (1.1). Examples include the following series where µ(n) denotes the M¨obiusfunction, φ(n) denotes Euler's phi function, σα(n) denotes the generalized sum of divisors function, λ(n) denotes Liouville's function, Λ(n) denotes von Mangoldt's function, !(n) defines the number of distinct primes dividing n, and Jt(n) is Jordan's totient function for a fixed Received by the editors October 9, 2017, and in revised form January 3, 2018. -
Rapidly Converging Formulae for $\Zeta (4K\Pm 1) $
RAPIDLY CONVERGING FORMULAE FOR ζ(4k 1) ± SHUBHO BANERJEE AND BLAKE WILKERSON Abstract. We provide rapidly converging formulae for the Riemann zeta L s n − n function at odd integers using the Lambert series q(s)= n∞=1 n q /(1 q ), s = −(4k ± 1). Our main formula for ζ(4k − 1) convergesP at rate of about √15π 4π e− per term, and the formula for ζ(4k + 1), at the rate of e− per ≈ π3√15 term. For example, the first order approximation yields ζ(3) 100 + √15π 9 4 √15π 10 e− h 4 + √15 sinh( 2 )i which has an error only of order 10− . 1. Introduction In a recent paper [3] we analyzed the q 1− asymptotic behavior of a Lambert series of the type | | → ∞ nsqnx (1.1) Lq(s, x)= , s C, 1 qn ∈ n=1 X − with q < 1 and x > 0. At x = 1, the Lambert series Lq(s, x) is the generating | | function for the divisor function σs(n), the sum of the sth powers of divisors of an integer n [1]: ∞ n (1.2) σs(n) q = Lq(s, 1). n=1 X For odd positive integer s values, the Lambert series is related to the Eisentein series 4k ∞ n arXiv:1803.03291v1 [math.NT] 9 Mar 2018 (1.3) E2k(q)=1 σ2k 1(n) q , − B k − 2 n=1 X that are modular in nature [2]. In this paper we focus on the Lambert series at negative odd integer values of s = (4k 1), k = 1, 2, 3, .. -
Identities for Catalan's Constant Arising from Integrals Depending
Identities for Catalan’s constant arising from integrals depending on a parameter Federica Ferretti∗Alessandro Gambini†and Daniele Ritelli‡ Abstract In this paper we provide some relationships between Catalan’s constant and the 3F2 and 4F3 hypergeomet- ric functions, deriving them from some parametric integrals. In particular, using the complete elliptic integral of the first kind, we found an alternative proof of a result of Ramanujan for 3F2, a second identity related to 4F3 and using the complete elliptic integral of the second kind we obtain an identity by Adamchik. KEYWORD: Catalan constant, elliptic integral, hypergeometric functions. AMS SUBJECT CLASSIFICATION 33C75, 33C20 1 Introduction Catalan’s constant G was defined by Eug`ene Charles Catalan, who introduced this constant in [13, eq. (4) p. 23] as the alternating series ∞ ( 1)n G = ∑ − 2 . n=0 (2n + 1) It is well-known, [14, eq. (1) p. 1], that we may also express this constant with the following definite integral 1 arctan x dx. x Z0 This integral has stimulated the interest of Ramanujan, [23]. G was also identified by James W.L. Glaisher in 1877, see [17]. Its value is approximately G ∼= 0.915965594177 . and actually it is not known if it is a rational number. The constant G is somewhat ubiquitous since it appears in many occurrences connected to definite integrals or series summations; we give a (surely) non exhaustive list of papers that provide several interesting occurrences of G, including [1, 2, 7, 10, 15, 19, 22] and [26]. There are also interesting connections between Catalan’s constant and the Clausen’s integrals, that is arXiv:2005.04672v1 [math.CA] 10 May 2020 θ t Cl2(θ) = log 2 sin dt, − 0 2 Z the Hurwitz zeta function, Euler-Mascheroni constant and many other special functions, as one can see for instance in [10], [15], [26]. -
On Generalizations of Lamberts Series
ON GENERALIZATIONS OF LAMBERTS SERIES TOM OSLER AND ABDUL HASSEN Abstract. The classical Lamberts series makes it possible to generate many remarkable transformations of series. These Lamberts series are all constructed from the function z/(1 − z). In this paper we show how to generalize these series by using an arbitrary function in place of z/(1 − z). Series transformations exhibiting beautiful symmetry are obtained. In addition, a double contour integral is found which represents these series. Our method is compared to a general procedure introduced by MacMahon. Keywords. 1. INTRODUCTION Let ∞ n B(z) = bnz , n=1 X then the series ∞ b L(z) = n (1.1) 1 − zn n=1 X is called a Lamberts series. These series are mentioned briefly in the classical texts by Abramowitz and Stegun [1], Bromwich [13], Crystal [16], Hardy and Wright [28], Knopp [36], MacMahon [39], Polya and Szego [42], and Titchmarsch [48]. With all the bn = 1, the series is an example of an analytic function defined inside the unit circle, which cannot be continued to a larger domain (see Titchmarsch [48]). Starting with the classical paper by Knopp [35] in 1913 and continuing to the present day, these series have entered into the theory of numbers, the theory of Weierstrasss elliptic functions, and the theory of basic hypergeometric series. Much of this research was motivated by the ideas of Ramanujan. Lambert Series also occur in the expansion of Eisenstein series, a particular kind of modular form. Agarwal [2] gives an excellent survey of these results. The series (1.1) can be transformed into another series ∞ ∞ b L(z) = n = B (zn) (1.2) 1 − zn n=1 n=1 X X and can be expanded in a Taylors series ∞ L(z) = b zn (1.3) d n=1 X Xd|n where the inner sum is over all divisors d of n. -
Extended Higher Herglotz Functions I. Functional Equations 2
EXTENDED HIGHER HERGLOTZ FUNCTIONS I. FUNCTIONAL EQUATIONS ATUL DIXIT, RAJAT GUPTA AND RAHUL KUMAR Dedicated to Professor Don Zagier on the occasion of his 70th birthday Abstract. In 1975, Don Zagier obtained a new version of the Kronecker limit formula for a real quadratic field which involved an interesting function F (x) which is now known as the Herglotz function. As demonstrated by Zagier, and very recently by Radchenko and Zagier, F (x) satisfies beautiful properties which are of interest in both algebraic number theory as well as in analytic number theory. In this paper, we study Fk,N (x), an extension of the Herglotz function which also subsumes higher Herglotz function of Vlasenko and Zagier. We call it the extended higher Herglotz function. It is intimately connected with a certain generalized Lambert series. We derive two different kinds of functional equations satisfied by Fk,N (x). Radchenko and Zagier gave a 1 log(1 + tx) beautiful relation between the integral dt and F (x) and used it to evaluate this Z0 1+ t integral at various rational as well as irrational arguments. We obtain a relation between Fk,N (x) and a generalization of the above integral involving polylogarithm. The asymptotic expansions of Fk,N (x) and some generalized Lambert series are also obtained along with other supplementary results. Contents 1. Introduction 1 2. Main results 5 2.1. Functional equations for extended higher Herglotz functions Fk,N (x) 6 2.3. Asymptotics of the extended higher Herglotz functions 8 2.4. An interesting relation between a generalized polylogarithm function and the extended higher Herglotz functions 9 2.5. -
Special Functions Related to Dedekind Type DC-Sums and Their
SPECIAL FUNCTIONS RELATED TO DEDEKIND TYPE DC-SUMS AND THEIR APPLICATIONS Yilmaz SIMSEK Akdeniz University, Faculty of Arts and Science, Department of Mathematics 07058 Antalya, Turkey [email protected] Abstract In this paper we construct trigonometric functions of the sum Tp(h, k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric represen- tations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized Lambert series (G-series), Hardy-Berndt sums and the sum Tp(h, k). We also give some applications related to these sums and functions. 2000 Mathematics Subject Classification. 11F20, 11B68, 11M35, 11M41, 11S80, 33C10, 33E20. Key Words and Phrases. Dedekind sums, Hardy-Berndt sums, Bernoulli Functions, Euler Functions, Euler numbers and polynomials, Riemann zeta function, Hurwitz zeta function, Lerch zeta function, Dirichlet series for the polylogarithm function, Dirichlet’s eta function, Legendre chi function, trigonometric functions and generalized Lambert series. arXiv:0902.0380v1 [math.CV] 2 Feb 2009 1 Introduction, Definitions and Notations In this section, we give some definitions, notations and results related to the Dedekind sums. Firstly we start with the definition of the classical Dedekind sums. Let x [x] 1 , if x / Z ((x)) = − G − 2 ∈ 0, if x Z, ∈ 1 [x]G being the largest integer x. Let h and k be coprime integers with k > 0, the classical Dedekind sum≤ s(h, k) is defined as follows k−1 a ha s (h, k)= . k k a=1 X The reciprocity law of the classical Dedekind sums is given by 1 1 h k 1 s(h, k)+ s(k, h)= + + + , −4 12 k h hk where (h, k) = 1 and h, k N := 1, 2, 3, .. -
Exact Formulas for the Generalized Sum-Of-Divisors Functions)
Exact Formulas for the Generalized Sum-of-Divisors Functions Maxie D. Schmidt School of Mathematics Georgia Institute of Technology Atlanta, GA 30332 USA [email protected] [email protected] Abstract We prove new exact formulas for the generalized sum-of-divisors functions, σα(x) := dα. The formulas for σ (x) when α C is fixed and x 1 involves a finite sum d x α ∈ ≥ over| all of the prime factors n x and terms involving the r-order harmonic number P ≤ sequences and the Ramanujan sums cd(x). The generalized harmonic number sequences correspond to the partial sums of the Riemann zeta function when r > 1 and are related to the generalized Bernoulli numbers when r 0 is integer-valued. ≤ A key part of our new expansions of the Lambert series generating functions for the generalized divisor functions is formed by taking logarithmic derivatives of the cyclotomic polynomials, Φ (q), which completely factorize the Lambert series terms (1 qn) 1 into n − − irreducible polynomials in q. We focus on the computational aspects of these exact ex- pressions, including their interplay with experimental mathematics, and comparisons of the new formulas for σα(n) and the summatory functions n x σα(n). ≤ 2010 Mathematics Subject Classification: Primary 30B50; SecondaryP 11N64, 11B83. Keywords: Divisor function; sum-of-divisors function; Lambert series; cyclotomic polynomial. Revised: April 23, 2019 arXiv:1705.03488v5 [math.NT] 19 Apr 2019 1 Introduction 1.1 Lambert series generating functions We begin our search for interesting formulas for the generalized sum-of-divisors functions, σα(n) for α C, by expanding the partial sums of the Lambert series which generate these functions in the∈ form of [5, 17.10] [13, 27.7] § § nαqn L (q) := = σ (m)qm, q < 1. -
Lambert Series and Ramanujan
Proc. Indian Aead. Sei. (Math. Sci.), Vol. 103, No. 3, December 1993, pp. 269-293. Printed in India. Lambert series and Ramanujan R P AGARWAL Department of Mathematics and Astronomy, University of Lucknow, Lucknow 226007, India MS received 28 December 1992 Abstract. Lambert series are of frequent occurrence in Ramanujan's work on elliptic functions, theta functions and mock theta functions. In the present article an attempt has been made to give a critical and up-to-date account of the significant role played by Lambert series and its generalizations in further development and a better understanding of the works of Ramanujan in the above and allied areas. Keywords. Basic hypergeometric series; Lambert series; elliptic functions; mock theta functions. 1. Introduction The topic of this article called the Lambert series is a very well-known class of series, both as analytic function and number theories. Our present interest in these series emerges out of the works of Ramanujan who has profusely and elegantly used these series in a variety of contexts in his mystic research work. A number of mathematicians, later, in an attempt to unravel the mysticism underlying some of the unproved identities of Ramanujan, have also used these series with advantage. To appreciate the effectiveness of choice of the use of these series by Ramanujan and subsequently, by other mathematicians in proving a variety of identities, one must examine how beautifully they enter into the theory of numbers, theory of Weierstrass's elliptic functions and the basic hypergeometric theory. We, now present our work starting with the definition and then the impact of Lambert series on the development of the above areas. -
Alternative Evaluation of a Ln Tan Integral Arising in Quantum Field
Alternative evaluation of a lntan integral arising in quantum field theory Mark W. Coffey Department of Physics Colorado School of Mines Golden, CO 80401 (Received 2008) November 9, 2008 Abstract A certain dilogarithmic integral I7 turns up in a number of contexts in- cluding Feynman diagram calculations, volumes of tetrahedra in hyperbolic geometry, knot theory, and conjectured relations in analytic number theory. We provide an alternative explicit evaluation of a parameterized family of inte- grals containing this particular case. By invoking the Bloch-Wigner form of the dilogarithm function, we produce an equivalent result, giving a third evaluation of I7. We also alternatively formulate some conjectures which we pose in terms of values of the specific Clausen function Cl2. arXiv:0810.5077v2 [math-ph] 15 Nov 2008 Key words and phrases Clausen function, dilogarithm function, Hurwitz zeta function, functional equation, duplication formula, triplication formula AMS classification numbers 33B30, 11M35, 11M06 1 The particular integral 24 π/2 tan t + √7 I7 ln dt, (1) ≡ 7√7 π/3 tan t √7 Z − occurs in a number of contexts and has received significant attention in the last several years [3, 4, 5, 6]. This and related integrals arise in hyperbolic geometry, knot theory, and quantum field theory [6, 7, 8]. Very recently [9] we obtained an explicit evaluation of (1) in terms of the specific Clausen function Cl2. However, much work remains. This is due to the conjectured relation between a Dirichlet L series and I7 [6], ? ∞ 1 1 1 1 1 1 I7 = L 7(2) = + + . − "(7n + 1)2 (7n + 2)2 − (7n + 3)2 (7n + 4)2 − (7n + 5)2 − (7n + 6)2 # nX=0 (2) The ? here indicates that numerical verification to high precision has been per- formed but that no proof exists, the approximate numerical value of I being I 7 7 ≃ 1.15192547054449104710169.