On the Limnology of Lake Tanganyika

Total Page:16

File Type:pdf, Size:1020Kb

On the Limnology of Lake Tanganyika On the limnology of Lake Tanganyika Victor T. Langenberg On the limnology of Lake Tanganyika Promotor: Prof dr M. Scheffer Hoogleraar Aquatische Ecologie en Waterkwaliteitsbeheer Wageningen Universiteit, Nederland Co-promotoren: Prof dr J. Sarvala Head of Department Biology, section of Ecology Universiteit van Turku, Finland Dr R.M.M. Roijackers Universitair Docent, leerstoelgroep Aquatische Ecologie en Waterkwaliteitsbeheer, Wageningen Universiteit, Nederland Prof dr A.A. Koelmans Persoonlijk hoogleraar bij de leerstoelgroep Aquatische Ecologie en Waterkwaliteitsbeheer, Wageningen Universiteit, Nederland Samenstelling promotiecommissie: Prof dr J-P Descy, Université de Namur, Belgium Prof dr J.A.J. Verreth, Wageningen Universiteit Dr J. Vijverberg, Nederlands instituut voor Ecologie, Nieuwersluis Dr P.C. Goudswaard, IMARES. Yerseke Dit onderzoek is uitgevoerd binnen de onderzoekschool WIMEK-SENSE On the limnology of Lake Tanganyika Victor Theodorus Langenberg Proefschrift Ter verkrijging van de graad van doctor Op gezag van de rector magnificus Van Wageningen Universiteit prof dr M.J. Kropff in het openbaar te verdedigen op vrijdag 14 maart 2008 des namiddags te vier uur in de aula V. T. Langenberg On the limnology of Lake Tanganyika Thesis Wageningen University, The Netherlands– with summary in Dutch and French ISBN 978-90-8504-784-1 Voor mijn ouders en mijn gezin Cover photos of R/V Tanganyika Explorer by V. T. Langenberg. Front: Light play through future door opening of wet laboratory including Greek chalk drawings of building scheme. Back: Trawling gear at the stern. Contents Chapter 1 General introduction 11 Chapter 2 Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. 21 Chapter 3 Comparison of thermal stratification, light attenuation and chlorophyll-a dynamics between the ends of Lake Tanganyika. 39 Chapter 4 Phytoplankton in Lake Tanganyika; vertical and horizontal distribution of in vivo fluorescence. 53 Chapter 5. Effect of wind induced water movements on nutrients, chlorophyll-a and primary production in Lake Tanganyika. 73 Chapter 6 Wind-induced changes in physico-chemical and plankton community structures. 87 Chapter 7 External nutrient sources for Lake Tanganyika. 103 Chapter 8 Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. 119 Chapter 9 Climate change versus productivity in Lake Tanganyika: cases fish and primary production. 151 Chapter 10 The problems confronting survival of biodiversity in ancient lakes 163 Summary 171 Résumé 179 Samenvatting 187 Acknowledgements 193 Curriculum vitae 205 List of publications 209 Chapter 1 General Introduction Chapter 1 General Introduction 11 Chapter 1 General Introduction 12 Chapter 1 General Introduction Research for the Management of the Fisheries on Lake Tanganyika (LTR) The large lakes of the East African Rift Valley are amongst the oldest on earth. Lake Tanganyika is the largest and oldest of the Rift Valley lakes of East Africa and the second largest and deepest freshwater body in the world (Horne and Goldman, 1994). Lake Tanganyika is shared by four nations, i.e. Burundi, Tanzania, Democratic Republic of Congo and Zambia. It is an ancient lake with a history of geographical isolation of some 20 million years. Flora and fauna therefore have unique characteristics not found elsewhere (Coulter, 1991). The lake is situated in a region characterised by low latitude, high temperatures and favourable light conditions year round and from ancient times, the lake’s fish productivity has been a major source for the nutritional, economic and social wellbeing for the indigenous human populations This unique ecosystem with its characteristic fluctuations in fish catches and continuous changes in species composition of the catch, defies standard fisheries planning, management and development practice (Hanek et al., 1997). Development programmes and studies undertaken under the Food and Agriculture Organization of the United Nations (FAO) auspices in the 1960s and 1970s in each of the four countries had concluded that simultaneous lake-wide research was needed to understand the observed phenomena, and more specifically how the lake demonstrates that high fish yields are not incompatible with apparently high water transparency, low nutrient concentrations, low algal biomass and other favoured water quality characteristics commonly found in oligotrophic waters. To this end, the four riparian countries requested FAO's Committee for Inland Fisheries of Africa (CIFA) in 1977 to create a Subcommittee for the Development and Management of the Fisheries of Lake Tanganyika. This body was specifically requested to formulate and subsequently find funding for a regional fisheries research project on the lake. The Finnish International Development Agency (FINNIDA) eventually honoured the request for support of the four countries, and a FAO-executed regional research project of 5 years duration entitled "Research for the Management of the Fisheries on Lake Tanganyika" (henceforth named LTR) became operational in 1992 (Hanek et al., 1997). Financing of the Arab Gulf Programme for United Nations Development Organizations (AGFUND) could also be mobilised for part of the equipment component of the project. It was felt that for the management of the fish stocks in the whole of Lake Tanganyika, a proper understanding of the hydrological, limnological and ecological mechanisms present in the lake is essential; such mechanisms were supposed to ultimately set the upper level for fish production. Earlier research on other African lakes had namely indicated the importance of these mechanisms in determining the chemical and biological characteristics of the upper productive waters (see Hecky and Bugenyi, 1992). At the commencement of LTR, such information for Lake Tanganyika was scarce and could be readily characterised by its short-term observations and poor regional coverage (see Coulter, 1991). Consequently, at that time, scientific speculations were not adequate to give sufficient insight into the Lake Tanganyika’s ecosystem functioning and productivity. Therefore, LTR's principal objective was to gather and synthesise data on the main hydrological, limnological and ecological variables, considered crucial to the further understanding of the mechanisms securing the biological basis for fish production in Lake Tanganyika (Hanek et al., 1997). Consequent the considerable monitoring information gathered in the course of LTR-project new insights were obtained. However it became clear that in-depth analyses of the data banks were needed to scrutinise existing theories as well as to formulate new ones. Seen the considerable effort needed to fully analyse LTR’s data banks, it was endorsed to also develop LTR’s data through analyses carried out in different theses (e.g., Mannini, 1998). My studies specifically addressed the limnological dynamics and cycles in Lake Tanganyika using mostly data collected during the LTR-project. Aim of thesis and background research questions This study describes and analyses the intra- and interannual variations of the physical, chemical and biological properties of Lake Tanganyika in order to acquire a better 13 Chapter 1 General Introduction understanding of the relations between constituents that are chemically and biologically active in the productive water layers of Lake Tanganyika. More specifically, based on the knowledge available, five sets of research questions were formulated: 1 What are the spatial and temporal distributions of naturally occurring constituents that are physically, chemically and biologically active in the upper water layers of Lake Tanganyika? The vertical distribution of naturally occurring, chemically and biologically active, constituents in the upper water layers of Lake Tanganyika have been studied and described by several scientists since the early work of Beauchamp in 1939. In general, most scientists agree on the existence of strong vertical gradients of nutrient concentrations like nitrogen, oxygen, silicate and phosphate that result from the lake's meromictic condition (Beauchamp, 1940; Kufferrath, 1952; Degens et al., 1971; Ferro and Coulter, 1974; Ferro, 1975; Well and Chapman, 1976; Coulter, 1991; Hecky and Bugenyi, 1992; Crul, 1993; Edmond et al., 1993 and Plisnier et al., 1996). Most scientific interpretations on the vertical distribution of important constituents and related mechanisms involved are based on short term measurements and many of them do not explain that the upper water layers are occasionally characterised by the occurrence of nutrient concentrations that are atypical to the oligotrophic and meromictic nature of the lake. The spatial and temporal distribution of epilimnetic constituents is still poorly defined, and even a complete annual cycle has not been observed previously on the lake. 2 What is the impact of the external influxes of constituents through terrestrial run-off, river inflow and atmospheric deposition on the chemical and biological characteristics of the upper waters of Lake Tanganyika? Is there a seasonal pattern? In order to solve this question, we try to elaborate on the relative importance of respectively the external influxes of constituents through terrestrial run-off, river inflow and atmospheric deposition to the overall nutrient budget of Lake Tanganyika. In general, loading of plant nutrients (in particular phosphorus and nitrogen) determines the standing crop and primary productivity of phytoplankton (Moss,
Recommended publications
  • The Art of Staying Neutral the Netherlands in the First World War, 1914-1918
    9 789053 568187 abbenhuis06 11-04-2006 17:29 Pagina 1 THE ART OF STAYING NEUTRAL abbenhuis06 11-04-2006 17:29 Pagina 2 abbenhuis06 11-04-2006 17:29 Pagina 3 The Art of Staying Neutral The Netherlands in the First World War, 1914-1918 Maartje M. Abbenhuis abbenhuis06 11-04-2006 17:29 Pagina 4 Cover illustration: Dutch Border Patrols, © Spaarnestad Fotoarchief Cover design: Mesika Design, Hilversum Layout: PROgrafici, Goes isbn-10 90 5356 818 2 isbn-13 978 90 5356 8187 nur 689 © Amsterdam University Press, Amsterdam 2006 All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book. abbenhuis06 11-04-2006 17:29 Pagina 5 Table of Contents List of Tables, Maps and Illustrations / 9 Acknowledgements / 11 Preface by Piet de Rooij / 13 Introduction: The War Knocked on Our Door, It Did Not Step Inside: / 17 The Netherlands and the Great War Chapter 1: A Nation Too Small to Commit Great Stupidities: / 23 The Netherlands and Neutrality The Allure of Neutrality / 26 The Cornerstone of Northwest Europe / 30 Dutch Neutrality During the Great War / 35 Chapter 2: A Pack of Lions: The Dutch Armed Forces / 39 Strategies for Defending of the Indefensible / 39 Having to Do One’s Duty: Conscription / 41 Not True Reserves? Landweer and Landstorm Troops / 43 Few
    [Show full text]
  • A Bike & Barge Cruise Through Belgium & Holland
    MUSEUM TRAVEL ALLIANCE A Bike & Barge Cruise Through Belgium & Holland From Bruges to Amsterdam Aboard Magnifique III September 21–29, 2018 MUSEUM TRAVEL ALLIANCE Dear Traveler, Please join Museum Travel Alliance from September 21 - 29 , 2018 on Belgium & Holland by Barge Aboard Magnifique III. Experience the best of Belgium and the Netherlands aboard a brand-new upscale barge. Immerse yourself in Flemish art and architecture in Bruges, Delft, and Amsterdam and learn about traditional craftsmanship from ale brewers, silversmiths, and cheese producers. Discover historic and contemporary architecture in Antwerp and see the iconic windmills of Kinderdijk up close. We are delighted that this trip will be accompanied by Paula Swart as our lecturer from Smithsonian Journeys. This trip is sponsored by Smithsonian Journeys. We expect this program to fill quickly. Please call the Museum Travel Alliance at (855) 533-0033 or (212) 302-3251 or email [email protected] to reserve a place on this trip. We hope you will join us. Sincerely, Jim Friedlander President TRIP HIGHLIGHTS ENJOY a behind-the-scenes look at the World Heritage-listed historical center of Bruges TAKE optional leisurely bicycle rides along picturesque canals ENGAGE in enriching presentations from your Smithsonian Journeys Expert CALL at Antwerp to view the Harbor House, dramatically renovated by Zaha Hadid VISIT the Rijksmuseum, the World Heritage site of the Kinderdijk windmills, and a traditional brewery ENJOY a private dinner overlooking the vineyard of a family- owned wine estate Harbor House, Antwerp A Bike & Barge Cruise Through Belgium & Holland From Bruges to Amsterdam Aboard Magnifique III September 21–29, 2018 Bruges FRIDAY, SEPTEMBER 21: DEPARTURE Sint-Niklaas, home to Belgium’s largest square and the Depart for Brussels, Belgium.
    [Show full text]
  • Report of the Third Joint Meeting of the LTR's Coordination
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN—TD/27 (En) TANGANYIKA GCP/RAF/271/FIN—TD/27 (En) December 1994 REPORT OF THE THIRD JOINT MEETING OF THE LTR’S COORDINATION AND INTERNATIONAL SCIENTIFIC COMMITTEES edited by G. HANEK AND E.J. COENEN FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, December 1994 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on the Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika Project (Lake Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA) and the Arab Gulf Programme for United Nations Development Organizations (AGFUND). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia) Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the build— up of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Farming the Edge of the Sea; the Sustainable Development of Dutch Mussel Fishery
    Farming the Edge of the Sea The Sustainable Development of Dutch Mussel Fishery1 Rob van Ginkel University of Amsterdam ABSTRACTThroughout the world, there are myriad examples of abuse, ov-qexploitation, or even depletion of living marine resources. Instances of successful fisheries management and sustainable use are rare. One such example is the Dutch mussel fishing and farming indus- try. During well defined periods in spring and autumn, the mussel fishers are allowed to catch young mussels, which they plant on plots rented from the state. This system has been in opera- tion since the 1860s. The present paper explores the history of the mussel industry, points out the ecological, economic and social consequences of privatization of the marine com- mons, describes successive types of management regimes and discusses some of the merits and demerits of privatization. / Introduction I There are numerous examples of "tragedies of the commons" (Hardin 1968) which menace fish stocks and fishing industries in many parts of the world. Ma- rine biologists and economists widely accept that resource abuse is inevitable under a system of common property tenure. They point out that fishers who enjoy unrestricted access to fishing grounds seek to maximize their profits in the short run. Fishing, they argue, is a zero-sum game in which one man's gain is another's loss (cf., e.g., Anderson 1976; Gordon 1954; Pontecorvo 1967; Scott 1955). The pessimistic message of the theorem is that "[rluin is the destination toward which all men rush, each pursuing his own best interest in a society that believes in the freedom of the commons" (Hardin 1968:1244).
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • Occurrence and Significance of Bonamiasis in European Flat Oysters Ostrea Edulis in North America
    DISEASES OF AQUATIC ORGANISMS Vol. 2: 49-54. 1986 Published December 31 Dis. aquat. Org. l Occurrence and significance of bonamiasis in European flat oysters Ostrea edulis in North America ' Center for Marine Disease Control. BattelleIMarine Research Laboratory, 439 West Sequim Bay Road, Sequim. Washington 98382, USA National Marine Fisheries Service. Northeast Fisheries Center, Oxford, Maryland 21654, USA ABSTRACT: The protozoan blood-cell parasite Bonamia ostreae of the European flat oyster Ostrea edulis has caused extens~ven~ortahties in France, the United Kingdom, The Netherlands, Spain, and Denmark. The discovery of the disease in 4 oyster populations in North America is the flrst documenta- tion of the disease outside Europe. Ultrastructure of the parasite, inflammatory lesions in the affected oysters, and transmissibility patterns of the disease demonstrate the identity of the disease in Europe and North America. Current studies and reconstruction of historical records trace the origin of the disease to California (USA) and possibly an Atlantic North American site, followed by its spread within North America and to Europe, where it was first described in detail and recognized as a significant cause of oyster mortalities. INTRODUCTION prevalance of this significant disease in 9 separate stocks of oysters, and reconstruct historical information A disease leading to extensive mortalities of the which demonstrates the probable route by which this European flat oyster Ostrea eduhs is caused by the serious disease spread within North America and sub- protozoan parasite Bonamia ostreae of the oyster's sequently to Europe. blood cells. First described from oysters in France in 1979 (Comps et al. 1980), significant mortalities of the flat oyster have been attributed to the disease in a METHODS AND MATERIALS variety of European countries including France, Spain, England, Denmark, and The Netherlands (Balouet et A total of 560 flat oysters Ostrea edulis from western al.
    [Show full text]
  • Everything You Should Know About Zeeland Provincie Zeeland 2
    Provincie Zeeland History Geography Population Government Nature and landscape Everything you should know about Zeeland Economy Zeeland Industry and services Agriculture and the countryside Fishing Recreation and tourism Connections Public transport Shipping Water Education and cultural activities Town and country planning Housing Health care Environment Provincie Everything you should know about Zeeland Provincie Zeeland 2 Contents History 3 Geography 6 Population 8 Government 10 Nature and landscape 12 Economy 14 Industry and services 16 Agriculture and the countryside 18 Fishing 20 Recreation and tourism 22 Connections 24 Public transport 26 Shipping 28 Water 30 Education and cultural activities 34 Town and country planning 37 Housing 40 Health care 42 Environment 44 Publications 47 3 History The history of man in Zeeland goes back about 150,000 brought in from potteries in the Rhine area (around present-day years. A Stone Age axe found on the beach at Cadzand in Cologne) and Lotharingen (on the border of France and Zeeuwsch-Vlaanderen is proof of this. The land there lies for Germany). the most part somewhat higher than the rest of Zeeland. Many Roman artefacts have been found in Aardenburg in A long, sandy ridge runs from east to west. Many finds have Zeeuwsch-Vlaanderen. The Romans came to the Netherlands been made on that sandy ridge. So, you see, people have about the beginning of the 1st century AD and left about a been coming to Zeeland from very, very early times. At Nieuw- hundred years later. At that time, Domburg on Walcheren was Namen, in Oost- Zeeuwsch-Vlaanderen, Stone Age arrowheads an important town.
    [Show full text]
  • Food Resources of Lake Tanganyika Sardines Metabarcoding of the Stomach Content of Limnothrissa Miodon and Stolothrissa Tanganicae
    FACULTY OF SCIENCE Food resources of Lake Tanganyika sardines Metabarcoding of the stomach content of Limnothrissa miodon and Stolothrissa tanganicae Charlotte HUYGHE Supervisor: Prof. F. Volckaert Thesis presented in Laboratory of Biodiversity and Evolutionary Genomics fulfillment of the requirements Mentor: E. De Keyzer for the degree of Master of Science Laboratory of Biodiversity and Evolutionary in Biology Genomics Academic year 2018-2019 © Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests. i ii Acknowledgments First of all, I would like to thank my promotor Filip for giving me this opportunity and guiding me through the thesis. A very special thanks to my supervisor Els for helping and guiding me during every aspect of my thesis, from the sampling nights in the middle of Lake Tanganyika to the last review of my master thesis. Also a special thanks to Franz who helped me during the lab work and statistics but also guided me throughout the thesis. I am very grateful for all your help and advice during the past year.
    [Show full text]
  • Head of Department of Marine Microbiology and Biogeochemistry
    Head of Department of Marine Microbiology and Biogeochemistry March 2020 2 Royal Netherlands Institute for Sea Research Head of Department of Marine Microbiology and Biogeochemistry Contents 3 Royal Netherlands Institute for Sea Research (NIOZ) – Strategic vision – Organisation 5 The Marine Microbiology and Biogeochemistry Department – Expertise 7 Appointment of Head of Department of Marine Microbiology and Biogeochemistry – Job description – Profile – Conditions of employment 9 Appointment process and how to apply 10 Living and working in the Netherlands – Dutch society – About Texel – Taxation 3 Royal Netherlands Institute for Sea Research Head of Department of Marine Microbiology and Biogeochemistry Royal Netherlands Institute for Sea Research (NIOZ) NIOZ, the Royal Netherlands Institute for Sea Research is a world-leading marine science institute. NIOZ is the Dutch national oceanographic institute, part of the Dutch Research Council NWO, and has been conducting seagoing research for over 140 years. NIOZ performs independent, fundamental and frontier- Strategic vision applied (inter-) disciplinary research, addressing The NIOZ aims to generate the multidisciplinary important scientific as well as societal issues towards a expertise and fundamental knowledge needed to underpin better understanding of the functioning of oceans and and improve long-term sustainable and responsible seas. Through its research, NIOZ links researchers from marine management; from a fundamental understanding various marine disciplines and from across the entire of key-processes to promoting innovative solutions to knowledge chain and connects them to societal (future) challenges of sustainable and responsible use partners. In addition, NIOZ maintains seagoing vessels of seas and oceans: their Mission Blue Planet. and equipment for the Dutch scientific community, acting as the country’s national marine research The Institute’s strategic plan identifies two broad facilitator.
    [Show full text]
  • A Latitudinal Gradient of Seasonal Temperature Variation Recorded in Oyster Shells from the Coastal Waters of France and The
    Facies Archimer, archive institutionnelle de l’Ifremer January 2010, Volume 56, Number 1, Pages 13-25 http://www.ifremer.fr/docelec/ http://dx.doi.org/10.1007/s10347-009-0196-2 © 2010 Springer. Part of Springer Science+Business Media The original publication is available at http://www.springerlink.com ailable on the publisher Web site A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and The Netherlands Franck Lartaud1, 4, *, Laurent Emmanuel1, Marc de Rafelis1, Michel Ropert2, Nathalie Labourdette1, Christopher A. Richardson3 and Maurice Renard1 1 UPMC Paris 06, UMR 7193, ISTeP-Lab. Biominéralisations et Environnements sédimentaires, Case postale 116, 4 place Jussieu, 75252 Paris Cedex 05, France 2 blisher-authenticated version is av Laboratoire Environnement Ressource de Normandie (LERN), IFREMER, BP 32, Avenue du Général de Gaulle, 14520 Port-en-Bessin, France 3 School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK 4 Present address: IUEM-UBO, UMR CNRS 6539, Lab. Sciences de l’Environnement Marin (LEMAR), Technopôle Brest-Iroise, Place N. Copernic, 29280 Plouzané, France *: Corresponding author : Lartaud F., email address : [email protected] Abstract: Cathodoluminescence (CL) microscopy of the foliated calcite shell hinge sections of live-collected oyster Crassostrea gigas collected at seven locations along a latitudinal gradient from the Netherlands in the North Sea to the Atlantic coast of France, revealed variations in luminescence that were attributable to seasonal variations in calcification of the hinge. Photomicrographs of hinge sections and luminescence profiles were analyzed to define a micro-sampling strategy that was adopted to drill the hinge samples to determine their isotopic composition.
    [Show full text]
  • Łspatial and Temporal Variability in Growth and Reproduction of the Japanese Cupped Oyster Crassostrea Gigas (Thunberg, 1793)
    This paper not to be cited without prior reference to the authors International Council for the CM 2004/K:22 Exploitation of the Sea Spatial and temporal variability in growth and reproduction of the Japanese cupped oyster Crassostrea gigas (Thunberg, 1793): are they adapting to northern European waters? Joana F.M.F. Cardoso1, Denis Langlet2, José F. Loff1, Ana R. Martins1, Johannes. IJ. Witte1 and Henk W. van der Veer1 1Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg Texel, The Netherlands 2Section de Pétrographie-Minéralogie-Géochimie, Musée Royal de l'Afrique Centrale, MRAC- Tervuren, Leuvensesteenweg 13, B3080 Tervuren, Belgium Abstract The Japanese cupped oyster, Crassostrea gigas, is native to Japan and was introduced in Europe for commercial purposes in the early 1960’s. In France and in the south of the Netherlands, this species is now a very important cultured species. Initially, it was thought that the cold northern waters of the Netherlands would restrain the species’ reproduction and settlement but surprisingly C. gigas is reproducing and expanding in several estuaries, and has already been seen in northern Germany. This suggests that over time eco-physiological changes have occurred, indicating either phenotypic and/or genotypic plasticity. In order to understand how this species was able to invade northern habitats, the energy flow over growth and reproduction in C. gigas was studied along a latitudinal gradient from La Rochelle, France to Eastern Scheldt and Wadden Sea in the Netherlands. Overall, the French population had a lower body condition than the two Dutch populations had. Animals from the north of the Netherlands (Wadden Sea) showed the highest gonad mass ratio, although the smallest egg size.
    [Show full text]
  • De Biblebelt ‘Bezien Van Boven En Onder De Gordel’ Onderzoek Naar Beeldvorming in De Media
    De Biblebelt ‘bezien van boven en onder de gordel’ Onderzoek naar beeldvorming in de media Masterthesis Universiteit van Utrecht Johan van der Giessen 18 januari 2013 Titel: De Biblebelt ‘bezien van boven en onder de gordel’ Subtitel: Onderzoek naar beeldvorming in de media Onderwerp: Masterthesis Instituut: Universiteit van Utrecht Faculteit: Geowetenschappen Master: Geo-communicatie Thesis begeleider: Dr. B. van Gorp Auteur: Johan van der Giessen Student nummer: 3379299 E-mail: [email protected] Datum: 18 januari 2013 Revisie: 1 Status: Definitief Aantal pagina's: vi + 74 ii De Biblebelt ‘bezien van boven en onder de gordel’ Onderzoek naar beeldvorming in de media Masterthesis Abstract The subject of this thesis is the Dutch Biblebelt. The Biblebelt is a region without institutional borders. It finds its origin in the sixteenth century as a result of the Reformation which started as movement to change the Roman-Catholic Church. The Netherlands had an open attitude towards new (religious) influences as a result of the focus on trade. Because of that the Netherlands became one of the protestant bastions in a couple of centuries as the Reformation started in 1517. This thesis investigates the historical processes which shaped the Biblebelt-region, where the protestant religion has been of great importance and still is nowadays. The purpose of this thesis is to find out how the Biblebelt-region is constructed through historical and religious processes and how its status maintains in present days. A theoretical overview makes clear which historical and religious processes have been of importance. Further on, the investigation switches towards an investigation of articles in popular media on how they create images of the Biblebelt and the influences of different processes as stereotyping, framing, distance decay on the images and the transporting of the images etc.
    [Show full text]