The Systematic Wood Anatomy of the Moraceae (Urticales) V. Genera of the Tribe Moreae Without Urticaceous Stamens *

Total Page:16

File Type:pdf, Size:1020Kb

The Systematic Wood Anatomy of the Moraceae (Urticales) V. Genera of the Tribe Moreae Without Urticaceous Stamens * IAWA Bulletin n.s., Vol. 7 (3),1986 175 THE SYSTEMATIC WOOD ANATOMY OF THE MORACEAE (URTICALES) V. GENERA OF THE TRIBE MOREAE WITHOUT URTICACEOUS STAMENS * by B.1. H. ter Welle, 1. Koek-Noorman and S. M. C. Topper Institute of Systematic Botany, University of Utrecht, Heidelberglaan 2, 3508 TC Utrecht, The Netherlands Summary The wood anatomy of the Moreae without based upon these characters, however (Berg, urticaceous stamens is described in detail. Ge­ 1983), is not in accordance with the tribes neric descriptions of the following genera are Moreae and Artocarpeae sensu Corner (1962). provided: Antiaropsis, Artocarpus, Bagassa, Ba­ Both Berg's and Corner's subdivisions deviate tocarpus, Clarisia, Parartocarpus, Poulsenia, from older classifications, as given by, for in­ Prainea, Sorocea, Sparattosyce, and Treculia. stance, Bentham and Hooker (1880) and Engler Wood anatomical variation below the genus (1888). level is very limited, except in the genus Clari­ The Moreae characterised by the absence of sia. Intergeneric variation, however, is much urticaceous stamens comprise the genera Antia­ more evident. Most genera can be recognised ropsis (New Guinea), Artocarpus (Southeast by the presence or absence of septate fibres, Asia), Bagassa (Neotropics), Batocarpus (Neo­ and of radial latex tubes, the size of the inter­ tropics), Clarisia (Neotropics), Hullettia (South­ vascular pits, the parenchyma distribution, and east Asia),Parartocarpus (Southeast Asia), Poul­ crystal distribution. The diagnostic and taxon­ senia (Neotropics), Prainea (Malesia), Sorocea omic value of several characters is discussed. (Neotropics), Sparattosyce (New Caledonia), Key words: Moraceae, Moreae, systematic wood and Treculia (Tropical Africa). anatomy. Methods and Materials In troduction The methods employed are those given in This paper is part of a series, in which the the first paper of this series (Koek-Noorman et wood anatomy of the Moraceae is described aI., 1984). All wood samples studied are backed and discussed in relation to the taxonomy of by herbarium vouchers. Taxa of the African the family. The general outline of this study is and Neotropical genera were identified or cited provided in the first paper (Koek-Noorman et by the authors of the various monographs. De­ aI., 1984). In the fourth paper of the series the tails on individual wood samples are provided wood anatomy of those genera of the tribe at the beginning of each generic description. Moreae (sensu Berg) which are characterised by The genus Hullettia is not represented in this urticaceous stamens was described (Ter Welle study because wood samples were not at our et aI., 1986). In this paper the genera without disposal. this type of stamens are dealt with. In addition The data on the specific gravity are based on to the structure of the stamens, the following the samples cited and complemented with data features can be used to characterise this group on other samples of the Utrecht wood collection of genera in Moreae according to Berg (1983): not further included in the anatomical study. inflorescences rather simple to complex; macro­ Quantitative data generally refer to average spermous; diaspores dry or mostly in fleshy values, unless specified otherwise. structures, mostly zoochorous; mostly in rain­ forest habitats; taxonomically and geographi­ cally segregated, pantropical, but chiefly in the Generic descriptions Indo-Malesian region. The tribe Moreae sensu Berg (1983) com­ Antiaropsis Schumann (Figs. I, 2) prises all genera of the tribes Artocarpeae and A genus with one or two species (Corner, Moreae sensu Corner (1962), and also a few 1962). The genus is probably restricted to Irian genera assigned to the tribe Olmedieae by Jaya (Indonesia). Its occurrence in Papua New Corner (1. c.). The subdivision in two groups Guinea is questioned by Corner (1962). The * This project was made possiple by a grant of BION -ZWO (14.45 -0 1). Downloaded from Brill.com10/06/2021 06:03:46AM via free access 176 IAWA Bulletin n.s., Vol. 7 (3), 1986 shrubs or small trees, up to II m high, are found 22031 b (Uw 24421). - A. fretissii Teijsm. & in lowland forests up to 1000 m altitude, usual­ Binn. ex Hassk. Indonesia, Irian Jaya: BW 9871 ly in the undergrowth. (Uw 18112), BW 2133 (Uw 24316), BW 2512 Mat e ri a 1st u die d : A. decipiens Schu­ (Uw 24317), BW 2175 (Uw 24318). -A. hor­ mann. Indonesia, Irian Jaya: CSIRO H 5198 ridus Jarrett. Indonesia, Irian Jaya: BW 11593 (Uw 25533). (Uw 20479). - A. integer (Thunb.) Merr. Indo­ Ge n e r al fe at u re s: Growth rings absent; nesia, Irian Jaya: BW 5659 (Uw 24319); Jamai­ heartwood not available, sapwood light brown. ca (cult.): US Nat. Herb. (Uw 8294); South Texture fine, grain straight. Specific gravity c. Africa (cult.): Baijnath s.n. (Uw 25507). - A. 750 N per cubic metre. kemando Miq. Malaya: FMS 28853, ex FHOw Micro s cop i c fe a t u re s: Vessels diffuse, 4536 (Uw 24608); Indonesia: RTIw IND. Col. solitary (50%) and in short radial multiples of 3590 (Uw 24605), Pfeiffer E 755 (Uw 24324). 2-3; 9 per sq.mm, round to slightly oval, diam­ - A. lakoocha Roxb. Pakistan: ex MADw 24487 eter 108 J.l1l1, vessel member length 525 J.l1l1. (Uw 18033); Thailand: Royal For. Dept. s.n. Perforations simple, end walls almost transverse. (Uw 24656). - A. lanceifolius Roxb. Indonesia: Intervascular pits alternate, polygonal, occasion­ RTIw IND. Col. 2200 (Uw 24606); RTlw IND. ally round, 7 -9 J.l1l1. Vessel-ray and vessel-paren­ Col. 4027 (Uw 24606). - A. nitidus Trecul. chyma pits larger, elongated, half-bordered, the Malaysia, Sabah: Sandakan For. Dept. 25510 borders often reduced. Thin-walled tyloses com­ (Uw 24217). - A. sepicanus Diels. Indonesia, mon, often with vitreous silica. Fibres septate, Irian Jaya: Fokkinga 7822 (Uw 24329). - A. with several septa per fibre, with small simple sericicarpus Jarrett. Malaysia, Sabah: Sandakan pits restricted to the radial walls; walls 3-4 /-Lm, For. Dept. 50586 (Uw 24218). - A. teysmannii lumina 3-7 J.l1l1; length 1600 /-Lm; F/V-ratio 3.0. Miq. Indonesia, Irian Jaya: BW 1204 (Uw Rays uniseriate and multiseriate, heterogeneous 24330). type II/III, 7 per mm. Uniseriate rays 25 %, Ge neral fe a tures: Growth rings absent; composed of upright cells only, but variable in heartwood light brown to dark brown, often height, height up to 12-24 cells (480-800 /-Lm). sharply distinct from the pale yellow to light Multiseriate rays composed of procumbent cells brown sapwood. Texture coarse, grain (weakly) except for the uniseriate margins of 1-5, occa­ interlocked. Specific gravity 280-940 N per sionally up to 20 rows of square and/or upright cubic metre. cells; 3-4 cells wide, up to 960-1400 /-Lm high. M i c r 0 s cop i c f eat u res: Vessels diffuse, Occasionally with some sheath cells. Parenchy­ solitary (45-80%) and in short radial multiples ma scanty paratracheal, and in concentric and irregular clusters of 2-4; 2-6 per sq. mm, bands, 3-6 cells wide and 4-5 per mm. Paren­ round and oval, diameter 160-310 jlm, vessel chyma strands of 4 cells. A few latex tubes ob­ member length 350-630 /-Lm. Perforations sim­ served in the rays. ple, end walls almost transverse. Intervascular pits alternate, round, polygonal and occasion­ Artocarpus J. R. & G. Forster (Figs. 3-6) ally slightly oval, 9-13 /-Lm. Vessel-ray and ves­ The genus has been monographed by Jarrett sel-parenchyma pits larger, half-bordered, the (l959c,d,e; 1960a, b). About 50 species are borders sometimes reduced. Thin-walled tyloses currently recognised. The genus is distributed common, but occasionally absent. Fibres non­ from India to southern China, Malesia and the septate, with small simple pits restricted to the Solomon Islands. Two species, A. altilis and A. radial walls; walls 2-4 /-Lm, lumina 7-25 /-Lm, heterophyllus, are cultivated all over the tropics gelatinous fibres present or absent; length for their fruits. Trees to large trees, up to 45 m, 1170-1950 /-Lm; F/V-ratio 2.3-3.9. Rays uni­ in evergreen forests and areas with a mild mon­ seriate and multiseriate, heterogeneous type soon climate, usually from sea level up to 1000 II/III, 3-6 per mm. Uniseriate rays 3-30%, m altitude. composed of upright, square and sometimes Mat e ria 1st u die d: A. anisophyllus Miq. few procumbent cells, height up to 4-10 cells Malaysia, Sabah: Sandakan For. Dept. 50567 (160-480 /-Lm). Multiseriate rays composed of (Uw 24213). - A. blancoi (Elmer) Merr. Philip­ procumbent cells, except for the uniseriate pines, Quezon: 1.P. Rojo 262 (Uw 24214). - margins of 1-2 (5) rows of square and/or up­ A. communis 1. R. & G. Forster. Indonesia, Irian right cells; 3-5 cells wide, up to 600-1200 /-Lm Jaya: BW 2904 (Uw 24602), BW 4219 (Uw high. Occasionally few sheath cells present. Pa­ 24603). - A. dadah Miq. Indonesia: RTIw IND. renchyma aliform with short to long wings, oc­ Col. T889 (Uw 25521), RTIw IND. Col. 14317 casionally confluent, and sporadically in short (Uw 25522). - A. elasticus Reinw. ex Blume. wavy bands. Parenchyma strands of 3-4 cells. Malaysia, Sabah: Sandakan Herb. Inst. 18656 Vitreous silica common, in the fibres or in the (Uw 24215); Indonesia, Java: Koorders 1026c/ vessels, often enveloping the tyloses. Radial Downloaded from Brill.com10/06/2021 06:03:46AM via free access IAWA Bulletin n.s., Vol. 7 (3), 1986 177 latex tubes present in most samples, axial latex Batocarpus Karsten (Figs. 9 & 10) tubes present or absent (cf. Topper & Koek­ A genus with four species according to the Noonnan, 1980). monograph of Mello Filho & Emmerich (1968). The genus is distributed from Costa Rica to Bagassa Aublet (Figs.
Recommended publications
  • Botany, Genetics and Ethnobotany: a Crossed Investigation on the Elusive Tapir’S Diet in French Guiana
    Botany, Genetics and Ethnobotany: A Crossed Investigation on the Elusive Tapir’s Diet in French Guiana Fabrice Hibert1*, Daniel Sabatier2,3, Judith Andrivot1,4, Caroline Scotti-Saintagne4, Sophie Gonzalez2, Marie-Franc¸oise Pre´vost2, Pierre Grenand5,Je´rome Chave6, Henri Caron7,Ce´cile Richard-Hansen1 1 Direction Etudes et Recherches Guyane, Office National de la Chasse et de la Faune Sauvage, Kourou, French Guiana, France, 2 Herbier de Guyane, UMR AMAP, IRD, Cayenne, French Guiana, France, 3 UMR AMAP, IRD, Montpellier, France, 4 UMR 0745 EcoFoG, INRA, Kourou, French Guiana, France, 5 UPS 3188 IRD, OHM Oyapock du CNRS, Cayenne, French Guiana, France, 6 Laboratoire Evolution et Diversite´ Biologique, UMR 5174 CNRS, Universite´ Paul Sabatier, Toulouse, France, 7 INRA, Universite´ de Bordeaux, UMR1202 BIOGECO, Cestas, France Abstract While the populations of large herbivores are being depleted in many tropical rainforests, the importance of their trophic role in the ecological functioning and biodiversity of these ecosystems is still not well evaluated. This is due to the outstanding plant diversity that they feed upon and the inherent difficulties involved in observing their elusive behaviour. Classically, the diet of elusive tropical herbivores is studied through the observation of browsing signs and macroscopic analysis of faeces or stomach contents. In this study, we illustrate that the original coupling of classic methods with genetic and ethnobotanical approaches yields information both about the diet diversity, the foraging modalities and the potential impact on vegetation of the largest terrestrial mammal of Amazonia, the lowland tapir. The study was conducted in the Guianan shield, where the ecology of tapirs has been less investigated.
    [Show full text]
  • Flora E Vegetação
    3 FlorA E vegetAÇÃO DA ReservA BiolÓgiCA de PedrA TAlhADA Louis Nusbaumer MARIA REGINA DE VASCONCELLOS Barbosa W. WAYT Thomas Marccus V. Alves PIERRE-ANDRÉ Loizeau RODOLPHE Spichiger Nusbaumer, L., M. R. V. Barbosa, W. W. Thomas, M. V. Alves, P.-A. Loizeau & R. Spichiger. 2015. Flora e vegetação da Reserva Biológica de Pedra Talhada. In : Studer, A., L. Nusbaumer & R. Spichiger (Eds.). Biodiversidade da Reserva Biológica de Pedra Talhada (Alagoas, Pernambuco - Brasil). Boissiera 68: 59-121. 60 Estratos arbustivo e arbóreo da floresta da Reserva de Pedra Talhada. FLORA E VEGETAÇÃO DA RESERVA BIOLÓGICA DE PEDRA TALHADA 3 INTRODUÇÃO A floresta da Reserva Biológica de Pedra Talhada está situada no interior do continente, a 90 km da A floresta da Reserva Biológica de Pedra Talhada costa, porém ainda, no domínio da Mata Atlântica, (Reserva) é considerada um brejo de altitude, ou bioma no qual predomina uma formação ombró­ seja, uma formação florestal ombrófila submonta­ fila constituída por numerosos táxons de regiões na (Submontane ombrophilous forest, STUDER, 1985; úmidas, tanto endêmicos quanto comuns à Floresta THOMAS & BARBOSA, 2008), que subsiste graças ao cli­ Amazônica. Entre os brejos de altitude da Reserva e a ma local muito mais úmido que aquele das regiões zona da mata, no litoral, se estende a zona do agreste, vizinhas (3.1, todas as fotografias deste capítulo fo­ que apresenta uma formação florestal de transição ram tiradas na Reserva Biológica de Pedra Talhada). mais seca que a floresta atlântica úmida, porém mais Essas condições climáticas favoráveis se mantêm úmida que a floresta xerófita da Caatinga. As forma­ graças ao relevo (inselbergs) do Planalto (Serra) da ções vegetais do agreste que circundam a floresta da Borborema, que barra os ventos oceânicos, captan­ Reserva estão gravemente ameaçadas pela pecuária do, por condensação, a umidade do ar que retorna e a agricultura (BIANCHI & HAIG, 2013).
    [Show full text]
  • The Potential for Harvesting Fruits in Tropical Rainforests: New Data from Amazonian Peru
    Biodiversity and Conversation 2, 18-38 The potential for harvesting fruits in tropical rainforests: new data from Amazonian Peru OLIVER PHILLIPS* Department Of' Biology, Washington University, Campus Box 1137, 1 Brookings Drive, St Louis, MO 63130- 4899, USA Received 28 January 1992; accepted 18 February 1992 New data shows that edible fruit and nut production in Amazonian forests is substantially lower than most conservationists assume. Direct measures of production in Amazonian Peru show that two terra firrna forest types produced significantly less edible fruit than an alluvial soil forest. Swamp forest produced more edible fruit than any other forest type measured. Palms produce 60% of edible fruit productivity, averaged over three forest types, but the most preferred palm fruits are difficult to harvest because they are borne too high for easy access by collectors. Forest fruit collection in Amazonia is less productive in the short-term than all other food-producing activities except for hunting and cattle ranching. Technological, social and political changes are essential so that sustainable but intrinsically low-yielding extractive activities like fruit collecting become more attractive to Amazonians. Keywords: harvesting; rainforest; fruit and nut; Amazonian Peru Introduction In the last five years, there has been growing interest in the promise of sustained-yield collection of non-timber forest products (NTFPs) from tropical forests as an alternative to deforestation. The broad range of NTFPs harvested by forest-dwelling people includes medicinals, fruits, and industrial materials such as rubber and rattan. Potentially, the combined value of such prodcuts, available year-after-year on a sustainable basis, may make NTFP collection an attractive alternative to destructive uses of tropical forests (e.g.
    [Show full text]
  • Pollination Biology of Mesogyne Insignis Engler in the Amani Nature Reserve, East Usambara Mountain Forests Tanzania
    Pollination biology of mesogyne insignis engler in the amani nature reserve, East Usambara mountain forests Tanzania Moses Iwatasia Olotu Master of Science in Integrated Environmental Management University of Dar es Salaam, College of Natural and Applied Science, 2009. Fig pollination is a well-known scenario of obligate mutualism involving specialized fig wasp (Agaonidae) and Ficus species (Moraceae). However, pollination biology and possible pollination are poorly understood in Mesogyne (Castilleae), the recently identified sister group of Ficus. Furthermore, little is known about the effects of forest fragmentation on reproductive success of M.insignis and diversity of pollinators. This study was carried out in East Usambara Mountain forests in 2008 and the major aim was to investigate on the pollination biology of Mesogyne insignis. The specific objectives were (i) to identify possible pollinators of M. insignis, (ii) to compare the abundance of pollinators between forest fragments and intact forests and (iii) to evaluate the effect of pollinators on reproduction of M. insignis. Visual observation, insect trapping and pollinator exclusion experiments were the methods used. Diversity of Arthroped orders trapped from intact forest (10) was significantly higher than those from forest fragments (8) (P˂ 0.001). most of the morphotype in the genus Megachile and family Vespidae were observed actively feeding on M. insignis flower parts and are considered to be potential pollinators. Additionally, thrips, the symbionts of M. insignis flower seems to be responsible for pollination of this species as revealed from fine mesh exclusion experiment. Overall, the total number of fruits set was significantly higher diversity and abundance of potential pollinators in an intact forest.
    [Show full text]
  • Corner, Mainly Melanesian
    New species of Streblus and Ficus (Moraceae) E.J.H. Corner Botany School, University of Cambridge, U.K. Summary New — Lour. S. Taxa. Streblus sect. Protostreblus, sect. nov., with the single species ascendens sp. nov. (Solomon Isl.); S. sclerophyllus sp. nou. (sect. Paratrophis, New Caledonia). Ficus F. cristobalensis var. malaitana var. nov. (subgen. Pharmacosycea, Solomon Isl.); hesperia sp. nov. (sect. Solomon servula and Sycidium, Isl.); F. sp. nov. F. lapidaria sp. nov. (sect. Adenosperma, New Guinea); F. novahibernica and F. cryptosyce (sect. Sycocarpus, New Ireland, New Guinea). Notes are given on Streblus pendulinus, S. solomonensis, Ficus illiberalis, F. subtrinervia (Solomon Isl.), F. adenosperma (Rotuma), and F. subcuneata with a key to its allies. Streblus Lour. sect. Protostreblus sect. nov. Folia spiraliter disposita; lamina ovata v. subcordata, costis basalibus ad mediam laminam elongatis, intercostis transversalibus numerosis. Inflorescentia ut in sect. Paratro- phis; embryo radicula incumbenti elongata, cotyledonibus foliaceis subincrassatis con- duplicatis. Cystolitha nulla. — Typus: S. ascendens, Insulis Solomonensibus. The structural peculiarity of this new section lies in the combinationof the Moras-like leafwith the reproductive characters of Streblus sect. Paratrophis. The ovate subcordate lamina with prominent basal veins and numerous transverse intercostals is unknown in Streblus. the rest of The lax spiral arrangement of the leaves is clearly antecedent to the distichous which also the of the prevails in rest genus. In various Moraceae, such as Ficus, Artocarpus, Maclura, and Broussonetia in the broad sense in which I understand them (Corner, 1962), the transition from the spiral arrangement to the distichous is manifest as the twig becomes more horizontal in its growth and develops applanate, in contrast with Thus this section be of the ascending, foliage.
    [Show full text]
  • The Synstigma Turns the Fig Into a Large Flower Simone P
    The synstigma turns the fig into a large flower Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira To cite this version: Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira. The synstigma turns the fig into a large flower. Botanical Journal of the Linnean Society, Linnean Society of London, In press, 10.1093/botlinnean/boaa061. hal-02981678 HAL Id: hal-02981678 https://hal.archives-ouvertes.fr/hal-02981678 Submitted on 28 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The synstigma turns the fig into a large flower Simone P. Teixeira1,*,, Marina F. B. Costa1,2, João Paulo Basso-Alves2,3, Finn Kjellberg4 And Rodrigo A. S. Pereira5 1Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040–903, Ribeirão Preto, SP, Brazil 2PPG em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, 13083–970, Campinas, SP, Brazil 3Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro, DIPEQ, Rua Pacheco Leão, 915, 22460- 030, Rio de Janeiro, RJ, Brazil 4CEFE UMR 5175, CNRS—Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, F-34293 Montpellier Cédex 5, France 5Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av.
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Inventario De Plantas En Los Jardines De La Posada San Andrés Unlimited
    Inventario de Plantas en los Jardines de la Posada San Andrés Unlimited. 1) Palma de Coco. “Cocos nucifera”. Jardín Suroccidental al Lado del Coral Spring Waterfall Jacuzzi. El cocotero (Cocos nucifera), es una especie de palmeras de la familia Arecaceae. Es monotípica, siendo su única especie Cocos nucifera. Este género alguna vez tuvo muchas especies que fueron siendo independizadas de este género, algunas hacia el género Syagrus, taxonómicamente hablando, las especies más próximas son Jubaeopsis caffra de Sudáfrica y Voanioala gerardii de Madagascar. Crece unos 30 metros o más y su fruto es el coco. Es el árbol emblemático del estado Zulia (Venezuela). La planta puede encontrarse en la orilla de playas tropicales arenosas del Mar Caribe, Océano Índico y Pacífico. Cultivada se da en otras zonas de clima caliente. Normalmente pueden crecer desde el ecuador hasta los paralelos 28º de ambos hemisferios, con algunas excepciones como las Islas Bermudas y Madeira. Descripción: Las hojas de esta planta son de gran tamaño de hasta 3 m de largo y su fruto, el coco, es la semilla más grande que existe. El cocotero es una sola especie con múltiples variedades, diferenciadas básicamente por el color del fruto (amarillo o verde). Las plantas sólo presentan diferencias en el tallo. El rasgo común y característico de todas ellas es el sabor de fruto, cuya característica es que es agradable, dulce, carnoso y jugoso. Su importancia económica ha hecho que se empiece a cultivar en las playas tropicales, su lugar idóneo. Las flores del cocotero son poligamomonoecias, con las flores masculinas y femeninas en la misma inflorescencia.
    [Show full text]
  • Volume II Appendices FILE
    Volume II Appendices FILE VI-. -. .; - -. , , ~711 =ii=:::i2iiii i , " i ' .:I IIgl~~ - Ij, , ! CENTRAL SELVA NATURAL RESOURCES MANAGEMENT PROJECT USAID PROJECT NO. 527-0240 VOLUME II - APPENDICES Lima, Peru October, 1981 Prepared by: JRB Associates 8400 Westpark Dr. McLean, VA 22102 APPENDICES APPENDIX A Bayley, Peter FISH RNSOURCES IN THE PALCAZU VALLEY: Effects of the Road and Colonization on Conservation and Protein Supply APPENDIX B Bolaftos/Wh-tson ROPORT ON THE EVALUATION OF LAND USE CAPACITY APPENDIX C Bolaflios/Wetson REPORT ON THE PALCAZU VALLEY ECOLOGICAL MALP APPBNDIX D Bt-aec, Antomd.-o ECOLOGICAL VALTgATION OF THE PALCAZU RIVER VALLEY ( Paseo, Peru.) AND GUIDELINES FOR AN BNVIRONMNTAL GONSBRYVMION PROGAM APPENDIX E Dourejean.i, Marc MNA&GNMENT OF FAUNA AND WLDLANDS IN THE PALCAZU VALLEY APPENDIX F Postec, Robin BRIE-F INVBNTORY OF PLANT COMMUNITIES AND PLANT RESOURCES OF THE PALCAZU VALLEY Department of Pasci. Peru APPENDIX G He.tsborn, Gary FORESTDRY POTENT.AL IN THE PA'WCAZU VALLEY, PERU APPENDIX H Marks, Ira BASELINE HEALTH ASSESSMENT OF THE PALCAZU VALLEY APPENDIX I MicCaff-rey, Dennis AIGZYSIS OF GOVERNMENTAL INSTITUTIONS INVOLVED IN DEVELOPMENT OF THE PALCAZU VALLEY APPENDIX J Morris, Gregory L. THE CLIMATE AND HYDROLOGY OrT THE PALCAZU WATERSHED AND IMPACTS OF AGRICULTURAL DEVELOPMENT APPENDI X K Pool, Douglas AGRICULTURAL POTENTIAL AND NATURAL RESOURCE MANAGEMENT OF THE PALCAZU VALLEY, PERU Appendix L Smith, Richard Chase LAND, NATURAL RESOURCES AND ECONOMIC DEVELOPMENT OF THE AMUESHA NATIVE COMMUNITIES IN THE PALCAZU VALLEY APPENDIX M Staver, Charles ANINWL PRODUCTION SYSTEMS IN THE PALCAZU VALLEY AND MRANS FOR THEIR EXPANSION AND INTENSIFICATION APPENDIX N Tesi, Joseph LAND USE CAPABILITY AND RECOMMENDED LAND USE FOR THE P&LCAZU VALLEY APPENDIX 0 Zadtaga, Frank SOME IMPORTANT WATER AND RELATED RESOURCE CONSIDERATIONS AFFECTING THE CAPABILITY AND SUITABILITY FOR DEVELOPMENT OF TEE PALCA.ZU VALLEY, PERU APPENDIX A FISH RESOURCES IN THE PALCAZU VALLEY: EFFECTS OF THE ROAD AND COLONIZATION ON CONSERVATION AND PROTEIN SUPPLY Peter B.
    [Show full text]
  • International Cooperation Among Botanic Gardens
    INTERNATIONAL COOPERATION AMONG BOTANIC GARDENS: THE CONCEPT OF ESTABLISHING AGREEMENTS By Erich S. Rudyj A thesis submitted to the Faculty of the University of elaware in partial fulfillment of the requirements for the degree Master of Science in Public Horticulture Administration May 1988 © 1988 Erich S. Rudyj INTERNATIONAL COOPERATION~ AMONG BOTANIC GARDENS: THE CONCEPT OF EsrtBllSHING AGREEMENTS 8y Erich S. Rudyj Approved: _ James E. Swasey, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: _ James E. Swasey, Ph.D. Coordinator of the Longwood Graduate Program Approved: _ Richard 8. MLfrray, Ph.D. Associate Provost for Graduate Studies No man is an /land, intire of it selfe; every man is a peece of the Continent, a part of the maine; if a Clod bee washed away by the Sea, Europe is the lesse, as well as if a Promontorie '-"Jere, as well as if a Mannor of thy friends or of thine owne were; any mans death diminishes me, because I am involved in Mankinde; And therefore never send to know for whom the bell tolls; It tolls for thee. - JOHN DONNE - In the Seventeenth Meditation of the Devotions Upon Emergent Occasions (1624) iii ACKNOWLEDGEMENTS I wish to express my sincerest thanks to Donald Crossan, James Oliver and James Swasey, who, as members of my thesis committee, provided me with the kind of encouragement and guidance needed to merge both the fields of Public Horticulture and International Affairs. Special thanks are extended to the organizers and participants of the Tenth General Meeting and Conference of the International Association of Botanical Gardens (IABG) for their warmth, advice and indefatigable spirit of international cooperation.
    [Show full text]
  • The Castilleae, a Tribe of the Moraceae, Renamed and Redefined Due to the Exclusion of the Type Genus Olmedia From
    Bot. Neerl. Ada 26(1), February 1977, p. 73-82, The Castilleae, a tribe of the Moraceae, renamed and redefined due to the exclusion of the type genus Olmedia from the “Olmedieae” C.C. Berg Instituut voor Systematische Plantkunde, Utrecht SUMMARY New data on in the of Moraceae which known cladoptosis group was up to now as the tribe Olmedieae led to a reconsideration ofthe position ofOlmedia, and Antiaropsis , Sparattosyce. The remainder ofthe tribe is redefined and is named Castilleae. 1. INTRODUCTION The monotypic genus Olmedia occupies an isolated position within the neo- tropical Olmedieae. Its staminate flowers have valvate tepals, inflexed stamens springing back elastically at anthesis, and sometimes well-developed pistil- lodes. Current anatomical research on the wood of Moraceae (by Dr. A. M. W. Mennega) and recent field studies (by the present author) revealed that Olmedia is also distinct in anatomical characters of the wood and because of the lack of self-pruning branches. These differences between Olmedia and the other representatives of the tribe demand for reconsideration of the position of the genus and the deliminationof the tribe. The Olmedia described The genus was by Ruiz & Pavon (1794). original description mentioned that the stamens bend outward elastically at anthesis. Nevertheless it was placed in the “Artocarpeae” (cf. Endlicher 1836-1840; Trecul 1847), whereas it should have been placed in the “Moreae” on ac- of of count the characters the stamens which were rather exclusively used for separating the two taxa. Remarkably Trecul (1847) in his careful study on the “Artocarpeae” disregarded the (described) features of the stamens.
    [Show full text]
  • Taluany Silva Do Nascimento
    UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PORTO NACIONAL PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE, ECOLOGIA E CONSERVAÇÃO TALUANY SILVA DO NASCIMENTO NOVOS REGISTROS DE ANGIOSPERMAS PLEISTOCÊNICAS PARA FORMAÇÃO RIO MADEIRA, BACIA DO ABUNÃ, RONDÔNIA, BRASIL PORTO NACIONAL (TO) 2021 TALUANY SILVA DO NASCIMENTO NOVOS REGISTROS DE ANGIOSPERMAS PLEISTOCÊNICAS PARA FORMAÇÃO RIO MADEIRA, BACIA DO ABUNÃ, RONDÔNIA, BRASIL Dissertação apresentada ao Programa de Pós – Graduação em Biodiversidade, ecologia e conservação da Universidade Federal do Tocantins, como parte dos requisitos para obtenção de título de mestre em biodiversidade, ecologia e conservação. Orientadora: Dra. Etiene Fabbrin Pires Oliveira PORTO NACIONAL (TO) 2021 Taluany Silva do Nascimento Novos registros de angiospermas pleistocênicas para formação rio Madeira, Bacia do Abunã, Rondônia, Brasil. Dissertação apresentada ao Programa de Pós- Graduação em Biodiversidade, Ecologia e Conservação. Foi avaliada para obtenção do título de Mestre em Biodiversidade, Ecologia e Conservação e aprovada em sua forma final pela Orientadora e pela Banca Examinadora. Data de aprovação: 28/04/2021 Banca Examinadora: ___________________________________________________ Profa. Dra. Etiene Fabbrin Pires Oliveira (Orientadora), UFT ___________________________________________________ Prof. Dr. André Jasper, Univates _________________________________________________ Prof. Dr. Yuri Modesto Alves, UFT Porto Nacional - TO, 2021 AGRADECIMENTOS Durante o meu mestrado foram muitas as pessoas que contribuíram e passaram pelo meu caminho influenciando de forma direta e indireta na construção desse trabalho. Sou grata a todos! Creio que não seja possível expressar tamanha gratidão, mas escreverei algumas palavras destacando essas contribuições, sem ordem de importância, mesmo correndo o risco de esquecer algum nome. O Laboratório de Paleobiologia da Universidade Federal do Tocantins, campus Porto Nacional, foi meu lar acadêmico durante os últimos 5 anos.
    [Show full text]