Noname manuscript No. (will be inserted by the editor) Randomized Matrix-free Trace and Log-Determinant Estimators Arvind K. Saibaba · Alen Alexanderian · Ilse C.F. Ipsen March 24, 2017 Abstract We present randomized algorithms for estimating the trace and deter- minant of Hermitian positive semi-definite matrices. The algorithms are based on subspace iteration, and access the matrix only through matrix vector products. We analyse the error due to randomization, for starting guesses whose elements are Gaussian or Rademacher random variables. The analysis is cleanly separated into a structural (deterministic) part followed by a probabilistic part. Our absolute bounds for the expectation and concentration of the estimators are non-asymptotic and informative even for matrices of low dimension. For the trace estimators, we also present asymptotic bounds on the number of samples (columns of the starting guess) required to achieve a user-specified relative error. Numerical experiments illustrate the performance of the estimators and the tightness of the bounds on low-dimensional matrices; and on a challenging application in uncertainty quan- tification arising from Bayesian optimal experimental design. Keywords trace · determinant · eigenvalues · subspace iteration · QR factoriza- tion · Monte Carlo methods · Gaussian random matrices · Rademacher random matrices · concentration inequalities · uncertainty quantification · Bayesian inverse problems · optimal experimental design The third author acknowledges the support from the XDATA Program of the Defense Advanced Research Projects Agency (DARPA), administered through Air Force Research Laboratory contract FA8750-12-C-0323 FA8750-12-C-0323. Arvind K. Saibaba Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA E-mail:
[email protected] http://www4.ncsu.edu/~asaibab/ Alen Alexanderian Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA E-mail:
[email protected] http://www4.ncsu.edu/~aalexan3/ Ilse C.