Pharmacological Reactivation of Inactive X-Linked Mecp2 in Cerebral Cortical Neurons of Living Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Long-Read Genome Sequencing for the Diagnosis Of
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185447; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Long-read genome sequencing for the diagnosis of neurodevelopmental disorders Susan M. Hiatt1, James M.J. Lawlor1, Lori H. Handley1, Ryne C. Ramaker1, Brianne B. Rogers1,2, E. Christopher Partridge1, Lori Beth Boston1, Melissa Williams1, Christopher B. Plott1, Jerry Jenkins1, David E. Gray1, James M. Holt1, Kevin M. Bowling1, E. Martina Bebin3, Jane Grimwood1, Jeremy Schmutz1, Gregory M. Cooper1* 1HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA, 35806 2Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA, 35924 3Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA, 35924 *[email protected], 256-327-9490 Conflicts of Interest The authors all declare no conflicts of interest. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185447; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Purpose Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. -
ACVR1 Antibody Cat
ACVR1 Antibody Cat. No.: 4791 Western blot analysis of ACVR1 in A549 cell lysate with ACVR1 antibody at 1 μg/mL in (A) the absence and (B) the presence of blocking peptide. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%), Rat: (93%) ACVR1 antibody was raised against a 14 amino acid synthetic peptide near the amino terminus of the human ACVR1. IMMUNOGEN: The immunogen is located within the first 50 amino acids of ACVR1. TESTED APPLICATIONS: ELISA, WB ACVR1 antibody can be used for detection of ACVR1 by Western blot at 1 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples. All other applications and species not yet tested. At least four isoforms of ACVR1 are known to exist. This antibody is predicted to have no SPECIFICITY: cross-reactivity to ACVR1B or ACVR1C. POSITIVE CONTROL: 1) Cat. No. 1203 - A549 Cell Lysate Properties October 1, 2021 1 https://www.prosci-inc.com/acvr1-antibody-4791.html PURIFICATION: ACVR1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ACVR1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ACVR1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: ACVR1 ACVR1 Antibody: FOP, ALK2, SKR1, TSRI, ACTRI, ACVR1A, ACVRLK2, Activin receptor type-1, ALTERNATE NAMES: Activin receptor type I, ACTR-I ACCESSION NO.: NP_001096 PROTEIN GI NO.: 4501895 GENE ID: 90 USER NOTE: Optimal dilutions for each application to be determined by the researcher. -
Complete Loss of CASK Causes Severe Ataxia Through Cerebellar Degeneration
Complete loss of CASK causes severe ataxia through cerebellar degeneration Paras Patel Fralin Biomedical Research Institute at VTC Julia Hegert Orlando Health Corp Ingrid Cristian Orlando Health Corp Alicia Kerr National Eye Institute Leslie LaConte Fralin Biomedical Research Institute at VTC Michael Fox Fralin Biomedical Research Institute at VTC Sarika Srivastava Fralin Biomedical Research Institute at VTC Konark Mukherjee ( [email protected] ) Fralin Biomedical Research Institute at VTC https://orcid.org/0000-0002-6922-9554 Research article Keywords: CASK, MICPCH, neurodegeneration, X-linked, X-inactivation, cerebellum, ataxia Posted Date: May 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-456061/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/34 Abstract Background: Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes neurodevelopmental disorders (NDD) in girls, while in boys loss of the only allele of these genes leads to profound encephalopathy. The cellular basis for these disorders remains unknown. CASK is presumed to work through the Tbr1-reelin pathway in neuronal migration. Methods: Here we report clinical and histopathological analysis of a deceased 2-month-old boy with a CASK-null mutation. We rst analyze in vivo data from the subject including genetic characterization, magnetic resonance imaging (MRI) ndings, and spectral characteristics of the electroencephalogram (EEG). We next compare features of the cerebellum to an-age matched control. Based on this, we generate a murine model where CASK is completely deleted from post-migratory neurons in the cerebellum. Results: Although smaller, the CASK-null human brain exhibits normal lamination without defective neuronal differentiation, migration, or axonal guidance, excluding the role of reelin. -
Application of a MYC Degradation
SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser . -
Nephrotoxicity of the BRAF-Kinase Inhibitor Vemurafenib Is Driven By
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.29.428783; this version posted January 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Nephrotoxicity of the BRAF-kinase inhibitor Vemurafenib is driven by off-target Ferrochelatase inhibition Yuntao Bai1, Ji Young Kim1, Laura A. Jayne1, Megha Gandhi1, Kevin M. Huang1, Josie A. Silvaroli1, Veronika Sander2, Jason Prosek3, Kenar D. Jhaveri4, Sharyn D. Baker1, Alex Sparreboom1, Amandeep Bajwa5, Navjot Singh Pabla1* 1Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA. 2Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand. 3The Ohio State University Wexner Medical Center, Columbus, OH, USA. 4Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Northwell Health, Great Neck, New York, USA. 5Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA. Running Title: Off-target mechanisms associated with vemurafenib nephrotoxicity. Correspondence should be addressed to: Navjot Pabla, Division of Pharmaceutics and Pharmacology, College of Pharmacy and Cancer Center, 460 W 12th Ave, Columbus, OH 43221, USA. Phone: 614-292-1063. E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.29.428783; this version posted January 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
ACVR1C Antibody Cat
ACVR1C Antibody Cat. No.: 4795 ACVR1C Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat ACVR1C antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of the human ACVR1C. IMMUNOGEN: The immunogen is located within amino acids 130 - 180 of ACVR1C. TESTED APPLICATIONS: ELISA, WB ACVR1C antibody can be used for detection of ACVR1C by Western blot at 1 and 2 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples. All other applications and species not yet tested. SPECIFICITY: This antibody is predicted to have no cross-reactivity to ACVR1 or ACVR1B. POSITIVE CONTROL: 1) Cat. No. 1309 - Human Placenta Tissue Lysate Properties PURIFICATION: ACVR1C Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal September 25, 2021 1 https://www.prosci-inc.com/acvr1c-antibody-4795.html ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ACVR1C Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ACVR1C antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: ACVR1 ACVR1C Antibody: FOP, ALK2, SKR1, TSRI, ACTRI, ACVR1A, ACVRLK2, Activin receptor ALTERNATE NAMES: type-1, Activin receptor type I, ACTR-I ACCESSION NO.: Q8NER5 PROTEIN GI NO.: 4501895 GENE ID: 90 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ACVR1C Antibody: Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. -
Cldn19 Clic2 Clmp Cln3
NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9 -
The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome
Asadi S and Aranian MR, J Hematol Hemother 5: 008 Journal of Hematology & Hemotherapy Review Article The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome Asadi S* and Aranian MR Division of Medical Genetics and Molecular Pathology Research, Harvard University, Boston Children’s Hospital, Iran Abstract *Corresponding author: Shahin Asadi, Division of Medical Genetics and Molecular Pathology Research, Harvard University, Boston Children’s Hospital, Iran, Tel: +98 Fibrodysplasia Ossificans Progressiva (FOP) is a severely dis- 9379923364; E-mail: [email protected] abling heritable disorder of connective tissue characterized by con- genital malformations of the great toes and progressive heterotopic Received Date: February 7, 2020 ossification that forms qualitatively normal bone in characteristic ex- Accepted Date: February 17, 2020 traskeletal sites. Classic FOP is caused by a recurrent activating mu- tation (617G>A; R206H) in the gene ACVR1 (ALK2) encoding Activin Published Date: February 24, 2020 A receptor type I/Activin-like kinase 2, a bone morphogenetic protein (BMP) type I receptor. Atypical FOP patients also have heterozygous Citation: Asadi S, Aranian MR (2020) The Role of Genetics Mutations in Genes ACVR1, BMPR1A, BMPR1B, BMPR2, BMP4 in Stone Man Syndrome. J Hematol ACVR1 missense mutations in conserved amino acids. Hemother 5: 008. Keywords: ACVR1; BMPR1A; BMPR1B; BMPR2; BMP4; Genetics Copyright: © 2020 Asadi S, et al. This is an open-access article distributed under the mutations, Stone man syndrome terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source Overview of Stone Man Syndrome are credited. -
FOP) Can Be Rescued by the Drug Candidate Saracatinib
Stem Cell Reviews and Reports https://doi.org/10.1007/s12015-020-10103-9 ActivinA Induced SMAD1/5 Signaling in an iPSC Derived EC Model of Fibrodysplasia Ossificans Progressiva (FOP) Can Be Rescued by the Drug Candidate Saracatinib Susanne Hildebrandt1,2,3 & Branka Kampfrath1 & Kristin Fischer3,4 & Laura Hildebrand2,3 & Julia Haupt1 & Harald Stachelscheid3,4 & Petra Knaus 1,2 Accepted: 1 December 2020 # The Author(s) 2021 Abstract Balanced signal transduction is crucial in tissue patterning, particularly in the vasculature. Heterotopic ossification (HO) is tightly linked to vascularization with increased vessel number in hereditary forms of HO, such as Fibrodysplasia ossificans progressiva (FOP). FOP is caused by mutations in the BMP type I receptor ACVR1 leading to aberrant SMAD1/5 signaling in response to ActivinA. Whether observed vascular phenotype in human FOP lesions is connected to aberrant ActivinA signaling is unknown. Blocking of ActivinA prevents HO in FOP mice indicating a central role of the ligand in FOP. Here, we established a new FOP endothelial cell model generated from induced pluripotent stem cells (iECs) to study ActivinA signaling. FOP iECs recapitulate pathogenic ActivinA/SMAD1/5 signaling. Whole transcriptome analysis identified ActivinA mediated activation of the BMP/ NOTCH pathway exclusively in FOP iECs, which was rescued to WT transcriptional levels by the drug candidate Saracatinib. We propose that ActivinA causes transcriptional pre-patterning of the FOP endothelium, which might contribute to differential vascularity in FOP lesions compared to non-hereditary HO. Keywords FOP . BMP-receptor . Activin . iPSCs . Human endothelial cells . HO . Saracatinib Introduction pathological conditions such as cancer and chronic inflamma- tion [2]. -
Disease/Syndrome Features: Mutations in CDKL5 Are Associated
CDKL5 Disease/Syndrome Features: Mutations in CDKL5 are associated with early-onset, difficult to control seizures, X-linked intellectual disability, hypotonia, motor disability, and cortical visual impairment [Olson 2019]. Pathogenic variants in CDKL5 affect one in 40,000 to 60,000 live births with a female:male ratio of 4:1 [Olson 2019]. Individuals with mutations in CDKL5 show considerable phenotypic overlap with Rett syndrome, a disorder most often caused by mutations in MECP2, a gene also located on the X chromosome that is involved in transcriptional silencing and epigenetic regulation of methylated DNA. Features in common include a period of normal development followed by regression, minimal or absent speech, the inability to walk unassisted, hand stereotypies, breathing abnormalities, and autistic features. Infantile seizures are universal in CDKL5 disorders, and not typical of Rett. Individuals with CDKL5 mutations may also suffer from scoliosis, gastrointestinal difficulties, spasticity, hyperreflexia, and visual impairment. The full spectrum of CDKL5-related diseases is still being elucidated and mutations in the gene have so far been found in children previously diagnosed with Rett syndrome, Angelman syndrome, Lennox-Gastaut syndrome, and autism spectrum disorders [Tao 2004, Weaving 2004]. In terms of neuroimaging, most case reports have documented normal brain anatomy or occasional cortical atrophy or T2 fluid-attenuated inversion recovery hyperintensities in the white matter [Olson 2019], however neuroimaging has not yet been systematically reported in affected individuals. With regard to neuropathology, a single case report described the brain as the solely affected organ in a postmortem examination [Paine 2012]. Findings included cortical and cerebellar atrophy, ventricular enlargement, cerebral cortical gliosis, neuronal heterotopias in the white matter of the cerebellar vermis, gliosis of cerebellar cortex with loss of Purkinje cells and axonal swellings, and perivascular lymphocytes and axonal swellings in the anterior horn of the spinal cord. -
(CDKL5) Deficiency Disorder: Clinical Review
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder: clinical review Heather E. Olson1 Scott T. Demarest2, Elia M. Pestana-Knight3, Lindsay C. Swanson1, Sumaiya Iqbal4,5, Dennis Lal4,6, Helen Leonard 7, J. Helen Cross8, Orrin Devinsky9, Tim A. Benke10 1 Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Boston, MA, USA 2 Children’s Hospital Colorado and Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA 3 Cleveland Clinic Neurological Institute Epilepsy Center, Cleveland Clinic Neurological Institute Pediatric Neurology Department, Neurogenetics, Cleveland Clinic Children’s, Cleveland, OH. 4 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA 5 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA 6 Cleveland Clinic Genomic Medicine Institute and Neurological Institute, Cleveland, OH, US 7 Telethon Kids Institute, University of Western Australia, Perth, WA, Australia 8 UCL Great Ormond Street NIHR BRC Institute of Child Health, London, UK 9 Department of Neurology, NYU Langone Health, New York, NY 10 Children’s Hospital Colorado and Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado, School of Medicine, Aurora, CO, USA Corresponding author: Heather Olson, MD, MS Boston Children’s Hospital 300 Longwood Ave., Mailstop 3063 Boston, MA 02115 [email protected] Word count abstract: 146 Word count body: 3665 Abstract CDKL5 deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene cyclin-dependent kinase-like 5 (CDKL5). This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. -
Targeting Myostatin/Activin a Protects Against Skeletal Muscle and Bone Loss During Spaceflight
Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight Se-Jin Leea,b,1, Adam Lehara, Jessica U. Meirc, Christina Kochc, Andrew Morganc, Lara E. Warrend, Renata Rydzike, Daniel W. Youngstrome, Harshpreet Chandoka, Joshy Georgea, Joseph Gogainf, Michael Michauda, Thomas A. Stoklaseka, Yewei Liua, and Emily L. Germain-Leeg,h aThe Jackson Laboratory for Genomic Medicine, Farmington, CT 06032; bDepartment of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030; cThe National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX 77058; dCenter for the Advancement of Science in Space, Houston, TX 77058; eDepartment of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT 06030; fSomaLogic, Inc., Boulder, CO 80301; gDepartment of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030; and hConnecticut Children’s Center for Rare Bone Disorders, Farmington, CT 06032 Contributed by Se-Jin Lee, August 4, 2020 (sent for review July 14, 2020; reviewed by Shalender Bhasin and Paul Gregorevic) Among the physiological consequences of extended spaceflight signaling and, as a result, can induce significant muscle growth are loss of skeletal muscle and bone mass. One signaling pathway when given systemically to wild type mice (13). Indeed, by that plays an important role in maintaining muscle and bone blocking both ligands, this decoy receptor can induce signifi- homeostasis is that regulated by the secreted signaling proteins, cantly more muscle growth than other MSTN inhibitors, and at myostatin (MSTN) and activin A. Here, we used both genetic and high doses, ACVR2B/Fc can induce over 50% muscle growth in pharmacological approaches to investigate the effect of targeting just 2 wk.