Natural Habitats Uncovered? – Genetic Structure of Known and Newly Found Localities of the Endangered Bitterling Pseudorhodeus Tanago (Cyprinidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Teleostei: Cyprinidae: Acheilognathinae) from China
Zootaxa 3790 (1): 165–176 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3790.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:BD573A51-6656-4E86-87C2-2411443C38E5 Rhodeus albomarginatus, a new bitterling (Teleostei: Cyprinidae: Acheilognathinae) from China FAN LI1,3 & RYOICHI ARAI2 1Institute of Biodiversity Science, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200433, China. E-mail: [email protected] 2Department of Zoology, University Museum, University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo. 113-0033, Japan. E-mail: [email protected] 3Corresponding author Abstract Rhodeus albomarginatus, new species, is described from the Lvjiang River, a tributary flowing into Poyang Lake of Yang- tze River basin, in Anhui Province, China. It is distinguished from all congeneric species by unique combination of char- acters: branched dorsal-fin rays 10; branched anal-fin rays 10–11; longest simple rays of dorsal and anal fins strong and stiff, distally segmented; pelvic fin rays i 6; longitudinal scale series 34–36; transverse scale series 11; pored scales 4–7; vertebrae 33–34; colour pattern of adult males (iris black, belly reddish-orange, central part of caudal fin red, dorsal and anal fins of males edged with white margin). Key words: Cyprinidae, Rhodeus albomarginatus, new species, Yangtze River, China Introduction Bitterling belong to the subfamily Acheilognathinae in Cyprinidae and include three genera, Acheilognathus, Rhodeus and Tanakia. The genus Rhodeus can be distinguished from the other two genera by having an incomplete lateral line, no barbels, and wing-like yolk sac projections in larvae (Arai & Akai, 1988). -
Puntius Snyderi ERSS
Puntius snyderi (a fish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2013 Revised, February 2019 Web Version, 8/8/2019 1 Native Range and Status in the United States Native Range From Chang et al. (2006): “Puntius snyderi is a freshwater cyprinid fish discovered by Oshima when he collected the freshwater fishes in Taiwan in 1915-1917. It was mainly distributed in northern and central Taiwan [Oshima 1919] […].” From Chang et al. (2009): “A similar inference was also proposed for Puntius snyderi and P. semifasciolatus in which P. snyderi is a species endemic to Taiwan and P. semifasciolatus is distributed in both China and Taiwan (Chang et al. 2006). These 2 species were proposed to have differentiated in China. After P. snyderi and P. semifasciolatus dispersed to Taiwan, P. snyderi became extinct in China (Chang et al. 2006).” 1 Chen et al. (2013) list Puntius snyderi as previously present on Kinmen Island, Taiwan but that it is currently locally extinct there. Status in the United States No records of Puntius snyderi in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Puntius snyderi in the wild in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2019), Puntius snyderi (Oshima 1919) is the current valid and original name of this species. From Bailly (2017): “Biota > Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Barbinae (Subfamily) > Puntius (Genus) > Puntius snyderi (Species)” Some sources refer to this species by a synonym, Barboides snyderi (Forese and Pauly 2019). -
And Intra-Species Replacements in Freshwater Fishes in Japan
G C A T T A C G G C A T genes Article Waves Out of the Korean Peninsula and Inter- and Intra-Species Replacements in Freshwater Fishes in Japan Shoji Taniguchi 1 , Johanna Bertl 2, Andreas Futschik 3 , Hirohisa Kishino 1 and Toshio Okazaki 1,* 1 Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] (S.T.); [email protected] (H.K.) 2 Department of Mathematics, Aarhus University, Ny Munkegade, 118, bldg. 1530, 8000 Aarhus C, Denmark; [email protected] 3 Department of Applied Statistics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria; [email protected] * Correspondence: [email protected] Abstract: The Japanese archipelago is located at the periphery of the continent of Asia. Rivers in the Japanese archipelago, separated from the continent of Asia by about 17 Ma, have experienced an intermittent exchange of freshwater fish taxa through a narrow land bridge generated by lowered sea level. As the Korean Peninsula and Japanese archipelago were not covered by an ice sheet during glacial periods, phylogeographical analyses in this region can trace the history of biota that were, for a long time, beyond the last glacial maximum. In this study, we analyzed the phylogeography of four freshwater fish taxa, Hemibarbus longirostris, dark chub Nipponocypris temminckii, Tanakia ssp. and Carassius ssp., whose distributions include both the Korean Peninsula and Western Japan. We found for each taxon that a small component of diverse Korean clades of freshwater fishes Citation: Taniguchi, S.; Bertl, J.; migrated in waves into the Japanese archipelago to form the current phylogeographic structure of Futschik, A.; Kishino, H.; Okazaki, T. -
RSG Book Template 2011 V4 051211
IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,200 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. IUCN Species Survival Commission (SSC) The SSC is a science-based network of close to 8,000 volunteer experts from almost every country of the world, all working together towards achieving the vision of, “A world that values and conserves present levels of biodiversity.” Environment Agency - ABU DHABI (EAD) The EAD was established in 1996 to preserve Abu Dhabi’s natural heritage, protect our future, and raise awareness about environmental issues. EAD is Abu Dhabi’s environmental regulator and advises the government on environmental policy. It works to create sustainable communities, and protect and conserve wildlife and natural resources. EAD also works to ensure integrated and sustainable water resources management, and to ensure clean air and minimize climate change and its impacts. Denver Zoological Foundation (DZF) The DZF is a non-profit organization whose mission is to “secure a better world for animals through human understanding.” DZF oversees Denver Zoo and conducts conservation education and biological conservation programs at the zoo, in the greater Denver area, and worldwide. -
Evidence of an Ancient Connectivity and Biogeodispersal of a Bitterling
www.nature.com/scientificreports OPEN Evidence of an ancient connectivity and biogeodispersal of a bitterling species, Rhodeus notatus, across the Korean Peninsula Hari Won1, Hyung-Bae Jeon 1,2 & Ho Young Suk1* The modern-day distribution of freshwater fshes throughout multiple rivers is likely the result of past migration during times when currently separate drainages were once connected. Here, we used mitochondrial and microsatellite analyses for 248 individuals of Rhodeus notatus collected from seven diferent rivers to obtain better understand historical gene fow of freshwater fsh on the Korean Peninsula. Based on our phylogenetic analyses, this Korean species originated through the paleo-Yellow River from China and frst colonized near the west coast. These genetic data also provided evidence of estuary coalescences among the rivers fowing to the west and southwest coast on well-developed continental shelf. In addition, the pattern of population structure revealed the biogeodispersal route from the west coast to the south coast. It could be inferred that massive migration was not involved in the formation of southern populations, since the signature of historical genetic drift was clearly observed. Our study is the frst genetic attempt to confrm hypotheses describing the migration of freshwater species towards the end of East Asia, which have previously been developed using only geological reasoning. Primary freshwater fsh species living in separate river systems are not able to come into contact naturally. Even within a single river system, populations can be isolated by landscape structures1–3. Te high degree of interpop- ulation genetic diferentiation normally found in freshwater fsh species has ofen been attributed to the frag- mented nature of freshwater environments4–7. -
The Intermuscular Bones and Ligaments of Teleostean Fishes *
* The Intermuscular Bones and Ligaments of Teleostean Fishes COLIN PATTERSON and G. DAVID JOHNSON m I I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 559 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)
Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, Laurent Viriot, Vincent Laudet To cite this version: Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, et al.. Evolution- ary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi).. PLoS ONE, Public Library of Science, 2010, 5 (6), pp.e11293. 10.1371/journal.pone.0011293. hal-00591939 HAL Id: hal-00591939 https://hal.archives-ouvertes.fr/hal-00591939 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi) Emmanuel Pasco-Viel1, Cyril Charles3¤, Pascale Chevret2, Marie Semon2, Paul Tafforeau4, Laurent Viriot1,3*., Vincent Laudet2*. 1 Evo-devo of Vertebrate Dentition, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 2 Molecular Zoology, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 3 iPHEP, CNRS UMR 6046, Universite´ de Poitiers, Poitiers, France, 4 European Synchrotron Radiation Facility, Grenoble, France Abstract Background: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. -
Acheilognathidae
FAMILY Acheilognathidae Bleeker, 1863 - bitterlings [=Acheilognathini, Rhodeina, Acanthorhodeinae] GENUS Acheilognathus Bleeker, 1860 - bitterlings [=Acanthorhodeus, Paracheilognathus, Rhodeops] Species Acheilognathus asmussii (Dybowski, 1872) - Russian bitterling, spiny bitterling [=amurensis] Species Acheilognathus barbatulus Günther, 1873 - Chinese bitterling [=argenteus, peihoensis, shibatae] Species Acheilognathus barbatus Nichols, 1926 - Ningkwo bitterling Species Acheilognathus binidentatus Li, in Wang et al., 2001 - XiQing bitterling Species Acheilognathus brevicaudatus Chen & Li, 1987 - Yangzonhai short-tail bitterling Species Acheilognathus changtingensis Yang et al., 2011 - Changting bitterling Species Acheilognathus chankaensis (Dybowski, 1872) - Khanka spiny bitterling [=atranalis, bleekeri, gracilis, imberbis, sungariensis, tokunagai, wangi] Species Acheilognathus coreanus Steindachner, 1892 - oily bitterling Species Acheilognathus cyanostigma Jordan & Fowler, 1903 - striped bitterling [=brevianalis] Species Acheilognathus deignani (Smith, 1945) - Deignan's bitterling Species Acheilognathus elongatoides Kottelat, 2001 - Thuong bitterling [=elongatus M] Species Acheilognathus elongatus (Regan, 1908) - elongate bitterling [=grahami] Species Acheilognathus fasciodorsalis Nguyen in, Nguyen & Ngo, 2001 - Song Bang bitterling Species Acheilognathus gracilis Nichols, 1926 - Tungting bitterling [=fowleri, luchowensis] Species Acheilognathus hypselonotus (Bleeker, 1871) - Chang Jiang bitterling Species Acheilognathus imberbis Günther, -
Chromosomal Studies of Masculinized Hybrids in Bitterlings (Teleostei: Cypriniformes: Acheilognathinae)
Natural Resources, 2016, 7, 326-330 Published Online June 2016 in SciRes. http://www.scirp.org/journal/nr http://dx.doi.org/10.4236/nr.2016.76028 Chromosomal Studies of Masculinized Hybrids in Bitterlings (Teleostei: Cypriniformes: Acheilognathinae) Takayoshi Ueda1, Yukie Ueda2 1Faculty of Education, Utsunomiya University, Utsunomiya, Japan 2Bato High School of Tochigi Prefecture, Nasu, Japan Received 24 April 2016; accepted 10 June 2016; published 13 June 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The chromosome analysis of the masculinized hybrid between female Tanakia limbata and male T. signifer in bitterlings (Acheilognathinae) was done. It was presumed that they had intermediate karyotype between the parents, and formed sperms with heteroploidy resulting from the incom- plete pairing of homologous chromosomes in meiosis. Due to the abundance of species and the ease of artificial fertilization, the study of the factor of the hybrid sterility in bitterlings would lead to the clarification of the mechanism about species differentiation and karyotype differentiation, and also to developing a new variety. Keywords Bitterling, Hybrid, Chromosome, Species Differentiation, Karyotype Evolution, Develop a New Variety 1. Introduction Bitterlings are freshwater fish species ascribed to the subfamily Acheilognathinae (Cyprinidae), and are distri- buted throughout Eurasia, and more widely in East Asia. Three valid genera, Acheilognathus, Rhodeus, and Ta- nakia [1], grouping approximately 80 species/subspecies [2], have been recognized. It is known fact that all bit- terlings are characterized by peculiar reproductive behavior which involves egg and sperm deposition in the mantle cavity of living freshwater bivalves. -
Polymorphism of MHC Class IIB in an Acheilognathid Species, Rhodeus
Jeon et al. BMC Genetics (2019) 20:74 https://doi.org/10.1186/s12863-019-0775-3 RESEARCH ARTICLE Open Access Polymorphism of MHC class IIB in an acheilognathid species, Rhodeus sinensis shaped by historical selection and recombination Hyung-Bae Jeon1,2, Hari Won1 and Ho Young Suk1* Abstract Background: Rhodeus sinensis is a bitterling species occurring throughout the numerous freshwater systems on the East Asia. Here, we analyzed the diversity of the MHC class IIB (DAB) genes from this species, which may offer meaningful insights into evolutionary processes in this species as well as other bitterlings. Results: Using cDNA and gDNA samples from 50 individuals, we discovered classical 140 allelic sequences that could be allocated into either DAB1 (Rhsi-DAB1)orDAB3 (Rhsi-DAB3). DAB sequences completely lacking the intron, but identical or similar to Rhsi-DAB1, were also discovered from our gDNA samples, and this intron loss likely originated from the retrotransposition events of processed mDNA. The β1 domain was the most polymorphic in both Rhsi-DAB1 and -DAB3. Putative peptide biding residues (PBRs) in Rhsi-DAB1, but not in Rhsi-DAB3, exhibited a significant dN/dS, presumably indicating that different selection pressures have acted on those two DABs. Recombination between different alleles seemed to have contributed to the increase of diversity in Rhsi-DABs. Upon phylogenetic analysis, Rhsi-DAB1 and -DAB3 formed independent clusters. Several alleles from other species of Cypriniformes were embedded in the clade of Rhsi-DAB1, whereas Rhsi-DAB3 clustered with alleles from the wider range of taxa (Cyprinodontiformes), indicating that these two Rhsi-DABs have taken different historical paths. -
Hybridization Between Two Bitterling Fish Species in Their Sympatric Range and a River Where One Species Is Native and the Other Is Introduced
RESEARCH ARTICLE Hybridization between two bitterling fish species in their sympatric range and a river where one species is native and the other is introduced Yohsuke Uemura1, Shotaro Yoshimi2, Hiroki Hata2* 1 Department of Biology, Faculty of Science, Ehime University, Matsuyama, Ehime Japan, 2 Graduate a1111111111 School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The distributions of two bitterling fish (subfamily: Acheilognathinae), Tanakia lanceolata and T. limbata, overlap in western Japan. Acheilognathinae fish lay their eggs in the gills of fresh- OPEN ACCESS water bivalves, and the early juvenile stage develops in the gills. Populations of freshwater Citation: Uemura Y, Yoshimi S, Hata H (2018) bivalves are declining worldwide, which has limited the number of spawning substrate for bit- Hybridization between two bitterling fish species in terlings. T. limbata has been artificially introduced to some rivers in Ehime, Japan, where it their sympatric range and a river where one coexists with native T. lanceolata, and some hybrids have been observed. We collected species is native and the other is introduced. PLoS ONE 13(9): e0203423. https://doi.org/10.1371/ both species from several sites in western Japan, and from the Kunichi River system in journal.pone.0203423 Ehime, and analyzed genetic population structure based on six microsatellite loci and Editor: Zuogang Peng, SOUTHWEST UNIVERSITY, sequences of the mitochondrial cytochrome b gene. Structure analysis identified three CHINA genetically distinct populations: T. lanceolata, T. limbata ªWest Kyushuº, and T. limbata Received: April 3, 2018 ªSetouchiº. Two clades of T. -
Cyprinidae: Acheilognathinae) from Japan
Bull. Natl. Mus. Nat. Sci., Ser. A, Suppl. 1, pp. 1–28, March 22, 2007 Four New Subspecies of Acheilognathus Bitterlings (Cyprinidae: Acheilognathinae) from Japan Ryoichi Arai1, Hiroshi Fujikawa2 and Yoshikazu Nagata3 1Department of Zoology, University Museum, University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan E-mail: [email protected] 2Osaka Prefectural Board of Education, Chuo-ku, Osaka 540–8571, Japan 3Department of Biology, Osaka Kyoiku University, 4–698–1 Asahigaoka, Kashiwara, Osaka 582–8582, Japan Abstract Four new bitterlings, Acheilognathus tabira erythropterus subsp. nov., Acheilognathus tabira tohokuensis subsp. nov., Acheilognathus tabira jordani subsp. nov. and Acheilognathus tabi- ra nakamurae subsp. nov., were described on the basis of more than 600 specimens from 26 locali- ties in Japan. Acheilognathus tabira erythropterus, A. t. tohokuensis and A. t. jordani, formerly all included in a single undescribed subspecies of Acheilognathus tabira, differ from other subspecies of A. tabira in having a red-edged anal fin in nuptial males. Acheilognathus t. erythropterus, dis- tributed on the Pacific Ocean side of eastern Honshu, is distinguished from A. t. tohokuensis and A. t. jordani by having shorter ellipsoidal eggs (ratio of major axis to minor axis: 1.4–2.2 vs. 2.0–3.3 in A. t. tohokuensis and A. t. jordani). Acheilognathus t. tohokuensis, distributed on the Japan Sea side of eastern Honshu, is distinguished from A. t. jordani in lacking a black blotch on the dorsal fin in juveniles. Acheilognathus t. jordani, distributed on the Japan Sea side of western Honshu, is distinguished from A.