Functional Ecology Author Guidelines s1

Total Page:16

File Type:pdf, Size:1020Kb

Functional Ecology Author Guidelines s1

Intra individual variability in fecal cortisol metabolites varies with lifetime

exploration and reproductive life history in eastern chipmunks (Tamias striatus)

Behavioural Ecology and Sociobiology

P.-O. Montiglio* a, D. Garant b, F. Pelletier c, D. Réale a a Chaire de recherche du Canada en écologie comportementale, Département des Sciences

Biologiques, Université du Québec à Montréal, CP 8888 succursale centre- ville,

Montréal (Qc). H3C 3P8, Canada. b Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de

l'Université, Sherbrooke (Qc), J1K 2R1, Canada. c Chaire de recherche du Canada en démographie évolutive et conservation, Département

de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boul. de l'Université,

Sherbrooke (Qc), J1K 2R1, Canada.

* Corresponding author: [email protected]

1 Supplementary material C

Example of code used to fit the model analysing female cortisol level. The code used the R package nlme (Pinheiro and Bates 2000) and R 2.14.1 (R Development Core Team, 2013). Code is presented in black, followed by an explanation of its meaning (# signs and text in red). library(nlme) #package developped by Pinheiro and Bates (2000). Additional information on the general approach to estimate variance covariates can be found in Pinheiro and Bates (2000), Mixed effects models in S and S-plus , Springer-Verlag, New York.

Full.Model = lme(log(cort+1) ~ (age + reproductive.status + exploration + litter.size)^2 # This specifies the fixed effects, all main effects and their two ways interactions. Fixed effects are estimated before random effects by the model.

, random=list(~1|id, ~1|date) # random effects estimating between individual and day variation. It allows the model to compute the day by day cortisol level for each individual differently.

, weights = varComb(varExp(1,~ exploration), varExp(1,~litter.size), varExp(1,~litter.size*exploration)) # variance covariate estimating the relationship between an individual's residual variance and exploration, litter size and their interaction. This acheives the same thing as extracting the residuals from a model and conducting a regression on them, yet this model provides more robust results against un-balanced data and assumptions about data distribution.

, data=data) # the data are structured as a data frame with one row for each cortisol sample, and one column for each variable.

# The final model is obtained after simplifying the fixed effect structure by AIC.

Final.Model = lme(log(cort+1) ~ -1 + reproductive.status + exploration + age

, random=list(~1|id, ~1|date)

2 , weights = varComb(varExp(1,~exploration), varExp(1,~litter.size), varExp(1, ~ litter.size*exploration))

, data=data)

# Model with a similar fixed effect structure, but without an interaction between litter size and exploration as variance covariate.

Final.Model.without.interaction = lme(log(cort+1) ~ -1 + reproductive.status + exploration + age

, random=list(~1|id, ~1|date)

, weights = varComb(varExp(1,~exploration), varExp(1,~litter.size))

, data=data)

anova(Final.Model, Final.Model.without.interaction) # testing whether the interaction between litter size and exploration as a variance covariate is significant.

3

Recommended publications