On the Curves Which Lie on the Quartic Surface in Space of Four Dimensions, and the Correspond

Total Page:16

File Type:pdf, Size:1020Kb

On the Curves Which Lie on the Quartic Surface in Space of Four Dimensions, and the Correspond 272 MR. HANUMANTA RAO [Dec. 6, ON THE CURVES WHICH LIE ON THE QUARTIC SURFACE IN SPACE OF FOUR DIMENSIONS, AND THE CORRESPOND. ING CURVES ON THE CUBIC SURFACE AND THE QUARTIC WITH A DOUBLE CONIC By C. V. HANUMANTA RAO. [Received October 22nd, 1917.—Read December 6th, 1917.] THE quartic surface in space of three dimensions which has a double conic was discussed by Segre (Math. Annalen, Vol. 24, 1884) as the pro- jection, from an arbitrary point, of the quartic surface F in space of four dimensions which is the intersection of two quadratic varieties in that space. When the centre of projection is taken on F itself, the surface projects into a cubic surface S3- Part I of this paper begins with a short account of some elementary properties relating to four-dimensional space and a brief re"sum6 of the chief properties of F proved by Segre. I then proceed to show how the properties of lines, conies, and cubics on Sd can be deduced from the properties of the corresponding curves on F. But it is found that the cubics on F do not exhaust the cubics on S3. In Part II, I therefore develop a theory of coresiduation on F. This part of the paper follows closely a paper by Prof. Baker (Proc. London Math. Soc, Ser. 2, Vol. 11, 1912). A good deal of this work could have been deduced as a generalisation of the work in Prof. Baker's paper, but a development from first principles was thought preferable. It 13 shown that all curves on F can be expressed in terms of six funda- mental elements. The concept of a double six on F is then introduced, and it is shown that there exist conical varieties in space of four dimen- sions with properties similar to those of Schur's quadrics, these being quadrics associated in a particular manner with the cubic curves on a cubic surface.* In Part III, the results obtained in Part II are projected, and a corresponding theory of coresiduation on the quartic surface in three dimensions which possesses a double conic is briefly sketched. It * See Baker, Zoc. cit., p. 300, and Roye, referred to below. 1917.] QlTARTIC S.URFACE IN SPACE OF FOUR DIMENSIONS. 273 is known* that the lines on this surface can be grouped in double fours; and it is here found that the double four is connected with rational quartics on the surface in the same way as cubics on S5 are connected with the double six. The work is in the first place an example of co- residuation, and in the second place an illustration of the principle of double projection which consists in a projective generalisation from the cubic surface to T, followed by a projective particularisation from V to S4, the quartic with a double conic. Throughout the preparation of this paper I have been in constant consultation with Prof. Baker. I render to him my grateful thanks. The following is a list of the more important references which I found useful in the preparation of the paper:— 1. Segre, Math. Annalen, Vol. 24, 1884, pp. 313-343. 2. Jessop, Quartic Surfaces, 1916, Chapter III. 3. Baker, Proc. London Math. Soc, Ser. 2, Vol. 11, 1912, pp. 285- 301. 4. Reye, Math. Annalen, Vol. 55, 1902, pp. 257-264. 5. Berzolari, Annali di Math., Ser. 2A, Vol. 13, 1885, pp. 102-120. PART I. 1. Any point in space of four dimensions may be represented by five homogeneous coordinates x, y, z, t, u. A locus of three dimensions represented by one rational equation is called a variety or threefold. An oo2 locus is called a surface or twofold, and is given by two equations. An oo1 locus is called a curve or onefold, and is determined by three equations. When these loci are linear, they are called hyperplane, plane, and line respectively. The general hyperplane is represented by 2, ax = 0 : a plane by two such equations, a line by three, and a point by four such equations. Two planes intersect in a line or a point only, according as they do or do not lie in the same hyperplane. A hyperplane is deter- mined by four arbitrary points and a plane by three. An algebraic variety met by any line in two points is termed a quadratic variety or simply a quadratic. Its equation is of the form F2 (x, y, z, t, u) = 0, * See Salmon, Solid Geometry, Vol. 2, 1915, p. 222. SEII. 2. VOL. 17. NO. 1319. X 274 ME. HANUMANTA RAO [Dec. 6, where F2 is a homogeneous quadratic function of the five variables. Its section by any hyperplane is a quadric surface, called here simply a quadric, and to be distinguished from a quadratic; and its section by any plane is a conic. The general equation of a quadratic involves fourteen constants. But just as a quadric may degenerate into a cone or a pair of planes, so also a quadratic may degenerate into a cone of the first species, a cone of the second species, or a pair of hyperplanes, according as the equation is reducible by linear substitutions to a form involving four, three, or two variables only. The equation of the general quadratic may be brought to the form Sx2 = 0 by suitable choice of the coordinate hyperplanes. The equations of the three degenerate forms may similarly be brought to the forms It follows from the first of the above equations that there is one point intimately associated with a cone of the first species or hypercone as it may be called. Whereas an arbitrary hyperplane intersects the hyper- cone in a quadric, any hyperplane passing through this particular point meets it in a quadric cone with vertex at this point. For this reason this point is called the vertex of the hypercone. From this it follows that if we join every point of a quadric to a point 0 which does not lie in the same hyperplane. we obtain a hypercone with vertex at 0. Every tangent hyperplane to the hypercone passes through the vertex, and intersects the surface in two planes whose line of intersection is the line of contact of the tangent hj'perplane. These planes are called generator planes, since they correspond to the generators of a quadric. Also they fall into two classes such that two planes of the same class have only one point in common, viz., the vertex of the hypercone, whereas two planes of opposite classes have a line common. Thus a hyperplane can always be drawn through two generator planes, one of each class. The second degenerate form of the quadratic is the cone of the second species. Its equation being of the form *2+Z/2+*2 = 0, every tangent hyperplane passes through a fixed line which is called the vertex line. The section by any hyperplane is a quadric cone with its vertex on the vertex line. The principles of reciprocation apply equally well to the case of quad- ratics. Every point has a polar hyperplane, and every line has a polar plane. In the case of a hypercone the polar hyperplane of any point passes through the vertex. 1917.] QUARTIC SURFACE IN SPACE OF FOUR DIMENSIONS. 275 2. We consider now the intersection of two quadratic varieties. Two quadratics whose discriminant does not vanish* can simultaneously be reduced to the forms Their intersection is a quartic surface or twofold. It is this surface which Segre projects from an arbitrary point on to an arbitrary hyperplane, so obtaining a quartic surface in space of three dimensions possessing a double conic. We may call it F with Segre. The network of quad- ratics F-\-\$ = 0 contains five hypercones, one of which is {a-e)x2-\-(b-e)if-Hc-e)z2+(d-e)f = 0. The five cones give rise to ten sets of generator planes. We shall now show that each of these planes meets F in a conic. Any hyperplane meets F in a quadriquartic curve ; in particular, a tangent hyperplane to any owe of the hypercones. F lies entirely on each of the hypercones ; and we have seen that a tangent hyperplane to a hypercone meets it in two generator planes. Hence the quartic curve of intersection of F by any such tangent hyperplane must break up into two plane curves lying in the two generator planes and intersecting twice on the line common to the two planes. These plane curves must obviously be conies. Thus any generator plane meets F in a conic. Conversely, every conic on F must lie in one of the generator planes. There are further sixteen lines on F, falling into groups in a special manner with respect to each hypercone. The analytical proof is ex- tremely simple, and reference may be made to Prof. Jessop's treatise."1 The argument given by Segre himself is interesting as going to the root of the matter, and may be exhibited as follows. The vertices of the five hypercones belonging to the network F+\& = 0 form a pentahedron which is self-polar with respect to all the quadratics of the network. Con- sider one of the vertices and the hypercone through that point. The opposite hyperplane intersects this hypercone in a principal quadric and F in a quartic curve. In each of the two systems of generators of the principal quadric there are four which touch the quartic curve. Let g be one of these generators, and P its point of contact with the quartic curve.
Recommended publications
  • Stereoscopic Model for Four Dimensions
    FRONTISPIECIC. Model of a hypercone. DR. LUISA BONFIGLIOLI Israel Institute of Technology K iriath Biahck (Haifa), Israel Stereoscopic Model for Four Dimensions ABSTRACT: A method is described for representing figures of four dimensions where the chief aim, insofar as possible, is to show them like the usual three di­ mensional figures to which one is accustomed. The figures can be specified by a function offour variables, or they can be defined in a geometrical way. It is also possible to represent curves or surfaces of ordinary three dimensional space where the coordinates of the points are expressed by parametric equ.ations. INTRODUCTION fourth dimension is used as a horizontal HE GEOMETRY of four dimensions is gen­ parallax. In this manner the bodies resemble T erally presented as an extension of the the customary ones bu t, because they are geometry of three dimensions and the study of seen in relief, they take the appearance of the it is based on abstract conceptsl or on ana­ complex bodies that they actually are. lytical calculations2 several attempts have In 3-D space the perspective view of a body been made3 in order to explain this subject, is generally constructed by utilizing two or in an understandable manner, to people who more orthogonal projections of it: also in 4-D have not a deep mathematical background in we must proceed in the same manner. There­ order to develop geometrical methods for its fore, before preparing the steroscopic model, representation 4 we have to draw two parallel projections of But these approaches failed to give a the given body,5 and after that we have to graphical representation of the elements of change the fourth dimension of the points of the four dimensional geometry resembling the it into horizontal parallax.
    [Show full text]
  • Varying Speed of Light in an Anisotropic Four-Dimensional Space J
    VARYING SPEED OF LIGHT IN AN ANISOTROPIC FOUR-DIMENSIONAL SPACE J. C. Pérez Ramos (e-mail: [email protected]) −Simplified version of original paper in Spanish− ABSTRACT: We show how the theory of relativity disagrees with the isotropy of the expanding universe and with the experimental arguments in favour of the existence of a preferred frame. We postulate a new heuristic principle, the invariance of the radius of the universe, deriving new transformation equations. Then we develop the geometric scenario and we prove how the universe equals an anisotropic inhomogeneous hyperboloid in four-space. The new model quite naturally incorporates the expanding universe, solves the cosmological horizon problem, explains the asymmetrical time dilation effect (for example, in the twin paradox) and describes the Big Bang in an original way by reducing the radius of the hypersphere to zero. The speed of light acquires a new geometrical meaning that justifies a varying speed of light (VSL) theory and clarifies unsolved problems in physics as the Pioneer anomaly, cosmological puzzles, the dark energy and the Loschmidt paradox. 1. INTRODUCTION _______________________________________________________________________________________ “The most important result of our reflections is, however, that precisely the apparently simplest mechanical principles are of a very complicated character; that these principles are founded on uncompleted experiences, even on experiences that never can be fully completed; that practically, indeed, they are sufficiently secured, in view of the tolerable stability of our environment, to serve as the foundation of mathematical deduction; but that they can by ho means themselves be regarded as mathematically established truths, but only as principles that not only admit of constant control by experience but actually require it.” Ernst Mach [1] 1.1.
    [Show full text]
  • On the Structure of Submanifolds with Degenerate Gauss Maps
    On the Structure of Submanifolds with Degenerate Gauss Maps Maks A. Akivis and Vladislav V. Goldberg Abstract. An n-dimensional submanifold X of a projective space P N (C) is called tangen- tially degenerate if the rank of its Gauss mapping γ : X → G(n,N) satisfies 0 < rank γ<n. The authors systematically study the geometry of tangentially degenerate submanifolds of a projective space P N (C). By means of the focal images, three basic types of submanifolds are discovered: cones, tangentially degenerate hypersurfaces, and torsal submanifolds. Moreover, for tangentially degenerate submanifolds, a structural theorem is proven. By this theorem, tangentially degenerate submanifolds that do not belong to one of the basic types are foliated into submanifolds of basic types. In the proof the authors introduce irreducible, reducible, and completely reducible tangentially degenerate submanifolds. It is found that cones and tangentially degenerate hypersurfaces are irreducible, and torsal submanifolds are completely reducible while all other tangentially degenerate submanifolds not belonging to basic types are reducible. Keywords: tangentially degenerate submanifold, submanifold with degenerate Gauss map- ping, structure theorem. 2000 Subject Classification: 53A20 0 Introduction An n-dimensional submanifold X of a projective space P N (C) is called tangen- tially degenerate if the rank of its Gauss mapping γ : X → G(n,N) is less than n, r = rank γ <n. Here x ∈ X, γ(x) = Tx(X), and Tx(X) is the tangent subspace to X at x considered as an n-dimensional projective space P n. The number r is also called the rank of X, r = rank X.
    [Show full text]
  • Figures of Light in the Early History of Relativity (1905–1914)
    Figures of Light in the Early History of Relativity (1905{1914) Scott A. Walter To appear in D. Rowe, T. Sauer, and S. A. Walter, eds, Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century (Einstein Studies 14), New York: Springer Abstract Albert Einstein's bold assertion of the form-invariance of the equa- tion of a spherical light wave with respect to inertial frames of reference (1905) became, in the space of six years, the preferred foundation of his theory of relativity. Early on, however, Einstein's universal light- sphere invariance was challenged on epistemological grounds by Henri Poincar´e,who promoted an alternative demonstration of the founda- tions of relativity theory based on the notion of a light ellipsoid. A third figure of light, Hermann Minkowski's lightcone also provided a new means of envisioning the foundations of relativity. Drawing in part on archival sources, this paper shows how an informal, interna- tional group of physicists, mathematicians, and engineers, including Einstein, Paul Langevin, Poincar´e, Hermann Minkowski, Ebenezer Cunningham, Harry Bateman, Otto Berg, Max Planck, Max Laue, A. A. Robb, and Ludwig Silberstein, employed figures of light during the formative years of relativity theory in their discovery of the salient features of the relativistic worldview. 1 Introduction When Albert Einstein first presented his theory of the electrodynamics of moving bodies (1905), he began by explaining how his kinematic assumptions led to a certain coordinate transformation, soon to be known as the \Lorentz" transformation. Along the way, the young Einstein affirmed the form-invariance of the equation of a spherical 1 light-wave (or light-sphere covariance, for short) with respect to in- ertial frames of reference.
    [Show full text]
  • Arxiv:2006.12880V1 [Stat.ML] 23 Jun 2020
    ABID: Angle Based Intrinsic Dimensionality Erik Thordsen[0000−0003−1639−3534] and Erich Schubert[0000−0001−9143−4880] TU Dortmund University, Dortmund, Germany {erik.thordsen,erich.schubert}@tu-dortmund.de Abstract. The intrinsic dimensionality refers to the “true” dimension- ality of the data, as opposed to the dimensionality of the data represen- tation. For example, when attributes are highly correlated, the intrinsic dimensionality can be much lower than the number of variables. Local intrinsic dimensionality refers to the observation that this property can vary for different parts of the data set; and intrinsic dimensionality can serve as a proxy for the local difficulty of the data set. Most popular methods for estimating the local intrinsic dimensionality are based on distances, and the rate at which the distances to the nearest neighbors increase, a concept known as “expansion dimension”. In this paper we introduce an orthogonal concept, which does not use any dis- tances: we use the distribution of angles between neighbor points. We derive the theoretical distribution of angles and use this to construct an estimator for intrinsic dimensionality. Experimentally, we verify that this measure behaves similarly, but com- plementarily, to existing measures of intrinsic dimensionality. By intro- ducing a new idea of intrinsic dimensionality to the research community, we hope to contribute to a better understanding of intrinsic dimension- ality and to spur new research in this direction. 1 Introduction Intrinsic Dimensionality (ID) estimation is the process of estimating the dimen- sion of a manifold embedding of a given data set either at each point of the data set individually or for the entire data set at large.
    [Show full text]
  • The Historical Origins of Spacetime Scott Walter
    The Historical Origins of Spacetime Scott Walter To cite this version: Scott Walter. The Historical Origins of Spacetime. Abhay Ashtekar, V. Petkov. The Springer Handbook of Spacetime, Springer, pp.27-38, 2014, 10.1007/978-3-662-46035-1_2. halshs-01234449 HAL Id: halshs-01234449 https://halshs.archives-ouvertes.fr/halshs-01234449 Submitted on 26 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The historical origins of spacetime Scott A. Walter Chapter 2 in A. Ashtekar and V. Petkov (eds), The Springer Handbook of Spacetime, Springer: Berlin, 2014, 27{38. 2 Chapter 2 The historical origins of spacetime The idea of spacetime investigated in this chapter, with a view toward un- derstanding its immediate sources and development, is the one formulated and proposed by Hermann Minkowski in 1908. Until recently, the principle source used to form historical narratives of Minkowski's discovery of space- time has been Minkowski's own discovery account, outlined in the lecture he delivered in Cologne, entitled \Space and time" [1]. Minkowski's lecture is usually considered as a bona fide first-person narrative of lived events. Ac- cording to this received view, spacetime was a natural outgrowth of Felix Klein's successful project to promote the study of geometries via their char- acteristic groups of transformations.
    [Show full text]
  • •Iiiiiiiih Br01g1423
    ISSN 0029-3865 •IIIIIIIIH BR01G1423 CBPF - CENTRO BRASILEIRO DE PESQUISAS FISICAS Rio de Janeiro Notas de Ffsica CBPF-NF-024/01 April 2001 Conformally symmetric massive discrete fields Manoelito M de Souza IVICT" - IVIinist^rio da Ciencia © Tecnologia C&T BRASH CBPF-NF-024/01 Conformally symmetric massive discrete fields Manoelito M de Souza* Centro Brasileiro de Pesquisas Fisicas- CBPF Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro -RJ - Brazil Conformal symmetry is taken as an attribute of theories of massless fields in manifolds with specific dimensions. This paper shows that this is not an absolute truth; it is a consequence of the mathematical repre- sentation used for the physical interactions. It introduces a new kind of representation where the propagation of massive (invariant mass) and mass- less interactions are unifiedly described by a single conformally symmetric Green's function. Sources and fields are treated at a same footing, symmet- rically, as discrete fields - the fields in this new representation - fields defined with support on straight lines embedded in a (3+l)-Minkowski manifold. The discrete field turns out to be a point in phase space. It is finite every- where. With a finite number of degrees of freedom it does not share the well known problems faced by the standard continuous formalism which can be retrieved from the discrete one by an integration over a hypersurface. The passage from discrete to continuous fields illuminates the physical meaning and origins of their properties and problems. The price for having massive discrete field with conformal symmetry is of hiding its mass and timelike velocity behind its non-constant proper-time.
    [Show full text]
  • Varying Speed of Light in an Anisotropic Four-Dimensional Space J
    Varying Speed of Light in an Anisotropic Four-Dimensional Space J. C. Perez Ramos To cite this version: J. C. Perez Ramos. Varying Speed of Light in an Anisotropic Four-Dimensional Space. 2014. hal- 00993263v1 HAL Id: hal-00993263 https://hal.archives-ouvertes.fr/hal-00993263v1 Preprint submitted on 19 May 2014 (v1), last revised 28 May 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VARYING SPEED OF LIGHT IN AN ANISOTROPIC FOUR-DIMENSIONAL SPACE J. C. Pérez Ramos (e-mail: [email protected]) −Simplified version of original paper in Spanish− ABSTRACT: We show how the theory of relativity disagrees with the isotropy of the expanding universe and with the experimental arguments in favour of the existence of a preferred frame. We postulate a new heuristic principle, the invariance of the radius of the universe, deriving new transformation equations. Then we develop the geometric scenario and we prove how the universe equals an anisotropic inhomogeneous hyperboloid in four-space. The new model quite naturally incorporates the expanding universe, solves the cosmological horizon problem, explains the asymmetrical time dilation effect (for example, in the twin paradox) and describes the Big Bang in an original way by reducing the radius of the hypersphere to zero.
    [Show full text]
  • Nota Cientifica 07/82 GEOMETRY AS an ASPECT OP DYNAMICS A.L.L
    Nota Cientifica 07/82 GEOMETRY AS AN ASPECT OP DYNAMICS A.L.L. Videira, A.L. Rocha Barros e N.C. Fernandes DEPARTAMENTO DE FlSICA i Julho 1982 Nota Científica 07/82 GEOMETRY AS AN ASPECT OF DYNAMICS* A.L.L. Videira Departamento de Física, Pontificia Universidade Católica Cx.P. 38071, Rio de Janeiro, RJ, Brasil and A.L. Rocha Barros and N,C. Fernandes Instituto de Física, Universidade de Sao Paulo São Paulo, Brasil July 1982 ABSTRACT. Contrary to the predominant way of doing physics, we shown that the geometric structure of a general differentiable space-time manifold can be determined by means of the introduction in that manifold of a minimal set of fundamental'dynamical quantities associated to a free particle endowed with the fundamental property of momentum. Thus, general relativistic physics implies a general pseudo-Riemannian geometry, whereas the physics of the special theory of relativity is tied up with Minkowski space-time, and Newtonian dynamics is bound to Newtonian space-time. While in the relativistic instance, the Riemannian character of the manifold is basically fixed by means only of the Hamiltonian state function of the free particle (its kynetic energy), in the latter case, we amk to resort,perhaps not unexpectedly, to the two dynamical entities mass nnd energy, separately. RESUMO. Contrariamente ao que se faz usualmente em Física, mostras»* que a estrutura geométrica de uma variedade espaço-temporal diferenciãvel geral pode ser determinada através da introdução nessa variedade de um conjunto mínimo de quantidades dinâmicas fundamentais, associadas a uma partícula livre dotada da propriedade fundamental de momento.
    [Show full text]
  • Conic Sections Beyond R2
    Conic Sections Beyond R2 Mzuri S. Handlin May 14, 2013 Contents 1 Introduction 1 2 One Dimensional Conic Sections 2 2.1 Geometric Definitions . 2 2.2 Algebraic Definitions . 5 2.2.1 Polar Coordinates . 7 2.3 Classifying Conic Sections . 10 3 Generalizing Conic Sections 14 3.1 Algebraic Generalization . 14 3.1.1 Classifying Quadric Surfaces . 16 3.2 Geometric Generalization . 19 4 Comparing Generalizations of Conic Sections 23 4.1 Some Quadric Surfaces may not be Conic Surfaces . 23 4.2 Non-Spherical Hypercones . 25 4.3 All Conic Surfaces are Quadric Surfaces . 26 5 Differential Geometry of Quadric Surfaces 26 5.1 Preliminaries . 27 5.1.1 Higher Dimensional Derivatives . 27 5.1.2 Curves . 28 5.1.3 Surfaces . 30 5.2 Surfaces of Revolution . 32 5.3 Curvature . 36 5.3.1 Gauss Curvature of Quadric Surfaces . 40 6 Conclusion 46 1 Introduction As with many powerful concepts, the basic idea of a conic section is simple. Slice a cone with a plane in any direction and what you have is a conic section, or conic; it is straightforward enough that the concept is discussed in many high school geometry classes. Their study goes back at least 1 to 200 BC, when Apollonius of Perga studied them extensively [1]. We can begin to see the power of these simple curves by noticing the diverse range of fields in which they appear. Kepler noted that the planets move in elliptical orbits. Parabolic reflectors focus incoming light to a single point, making them useful both as components of powerful telescopes and as tools for collecting solar energy.
    [Show full text]
  • The Gibbs Phenomenon / Quadric Hypersurfaces in Four Dimensional
    THE GIBBS PHENOMENON PAUL K. REES & Minor Thesis Submitted in Partial Fulfillment - of the Requirements for the Degree of Doctor of Philosophy at the Rice Institute 1933 1 THE GIBBS PHENOMENON Part 1- Fourier Series After an exchange a£ several letters in Nature which were started by a question proposed by Michelsan, Gibbs* points out his error in an earlier discription of the family of curves rep¬ resented by -. f J) y i 2 (M** Y- - 'A 2 r- 4 /j Av 3 K - ±'A, ^ * ) as a zigzag line consisting of alternate inclined and vertical portions. I shall quote a part of his letter. "The inclined portions were correctly given but the vertical portions, which are bisected by the x-axis, extend beyond the points where they meet the inclined portions, their total length being expressed by Iff M. , If we call this combination of the inclined and vertical lines £, and the graph of 1) cn, and if any finite distance d be specified, and take for n any number greater than the distance of every point in cn from £ is less than d and the distance of every point in £ from cQ is less than d . We may therefore call £ the limit of the sequence of curves of which c is the general designation. But this limiting form of the graphs of the functions ex¬ pressed by the sum 1) is di^eredt from the graph of the function expressed by the limit of that sum." / This noncaincidence of the upper and lower double limits of » a-t a point x- f , with the upper and lower limits of S(xj as ♦Nature, volume 59, p.
    [Show full text]
  • A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks
    Sensors 2009, 9, 6764-6794; doi:10.3390/s90906764 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks Saeid Pashazadeh * and Mohsen Sharifi School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +98-411-331 7709; Fax: +98-411-330 3701. Received: 25 June 2009; in revised form: 10 August 2009 / Accepted: 19 August 2009 / Published: 27 August 2009 Abstract: Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio- temporal information of a target object.
    [Show full text]