Geometric Differentiation: for the Intelligence of Curves and Surfaces: Second Edition I

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Differentiation: for the Intelligence of Curves and Surfaces: Second Edition I Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Geometric differentiation © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Geometric differentiation for the intelligence of curves and surfaces Second edition I. R. Porteous Senior Lecturer, Department of Pure Mathematics University of Liverpool © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information University Printing House, Cambridge CB2 8BS, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9780521810401 © Cambridge University Press 1994, 2001 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1994 Second edition 2001 A catalogue record for this publication is available from the British Library ISBN 978-0-521-81040-1 Hardback ISBN 978-0-521-00264-6 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Contents Introduction xi 1 Plane curves 1 1.0 Introduction 1 1.1 Regular plane curves and their evolutes 9 1.2 Curvature 14 1.3 Parallels 22 1.4 Equivalent parametric curves 26 1.5 Unit-speed curves 27 1.6 Unit-angular-velocity curves 28 1.7 Rhamphoid cusps 29 1.8 The determination of circular points 33 1.9 The four-vertex theorem 35 Exercises 37 2 Some elementary geometry 42 2.0 Introduction 42 2.1 Some linear facts 42 2.2 Some bilinear facts 44 2.3 Some projective facts 46 2.4 Projective curves 46 2.5 Spaces of polynomials 48 2.6 Inversion and stereographic projection 48 Exercises 49 3 Plane kinematics 51 3.0 Introduction 51 3.1 Instantaneous rotations and translations 51 v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information vi Contents 3.2 The motion of a plane at t 0 52 3.3 The in¯ection circle and Ball point 53 3.4 The cubic of stationary curvature 54 3.5 Burmester points 58 3.6 Rolling wheels 59 3.7 Polodes 61 3.8 Caustics 62 Exercises 63 4 The derivatives of a map 67 4.0 Introduction 67 4.1 The ®rst derivative and C1 submanifolds 67 4.2 Higher derivatives and Ck submanifolds 80 4.3 The FaaÁ de Bruno formula 83 Exercises 85 5 Curves on the unit sphere 88 5.0 Introduction 88 5.1 Geodesic curvature 89 5.2 Spherical kinematics 91 Exercises 94 6 Space curves 95 6.0 Introduction 95 6.1 Space curves 95 6.2 The focal surface and space evolute 100 6.3 The Serret±Frenet equations 105 6.4 Parallels 107 6.5 Close up views 113 6.6 Historicalnote 116 Exercises 116 7 k-times linear forms 119 7.0 Introduction 119 7.1 k-times linear forms 119 7.2 Quadratic forms on R2 122 7.3 Cubic forms on R2 124 7.4 Use of complex numbers 129 Exercises 134 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Contents vii 8 Probes 138 8.0 Introduction 138 8.1 Probes of smooth map-germs 138 2 8.2 Probing a map-germ V : R >! R 141 8.3 Optional reading 145 Exercises 151 9 Contact 152 9.0 Introduction 152 9.1 Contact equivalence 152 9.2 K -equivalence 154 9.3 Applications 155 Exercises 156 10 Surfaces in R3 158 10.0 Introduction 158 10.1 Euler's formula 167 10.2 The sophisticated approach 169 10.3 Lines of curvature 172 10.4 Focal curves of curvature 173 10.5 Historical note 177 Exercises 178 11 Ridges and ribs 182 11.0 Introduction 182 11.1 The normal bundle of a surface 182 11.2 Isolated umbilics 183 11.3 The normal focal surface 184 11.4 Ridges and ribs 187 11.5 A classi®cation of focal points 189 11.6 More on ridges and ribs 191 Exercises 195 12 Umbilics 198 12.0 Introduction 198 12.1 Curves through umbilics 199 12.2 Classi®cations of umbilics 201 12.3 The main classi®cation 202 12.4 Darboux's classi®cation 203 12.5 Index 208 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information viii Contents 12.6 Straining a surface 208 12.7 The birth of umbilics 210 Exercises 212 13 The parabolic line 214 13.0 Introduction 214 13.1 Gaussian curvature 214 13.2 The parabolic line 217 13.3 Koenderink's theorems 221 13.4 Subparabolic lines 223 13.5 Uses for inversion 229 Exercises 230 14 Involutes of geodesic foliations 233 14.0 Introduction 233 14.1 Cuspidal edges 234 14.2 The involutes of a geodesic foliation 240 14.3 Coxeter groups 248 Exercises 252 15 The circles of a surface 253 15.0 Introduction 253 15.1 The theorems of Euler and Meusnier 253 15.2 Osculating circles 255 15.3 Contours and umbilical hill-tops 260 15.4 Higher order osculating circles 263 Exercises 263 16 Examples of surfaces 265 16.0 Introduction 265 16.1 Tubes 265 16.2 Ellipsoids 266 16.3 Symmetrical singularities 270 16.4 Bumpy spheres 271 16.5 The minimal monkey-saddle 280 Exercises 285 17 Flexcords of surfaces 286 17.0 Introduction 286 17.1 Umbilics of quadrics 287 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Contents ix 17.2 Characterisations of ¯excords 288 17.3 Birth of umbilics 290 17.4 Bumpy spheres 298 Exercises 301 18 Duality 302 18.0 Introduction 302 18.1 Curves in S2 303 18.2 Surfaces in S3 306 18.3 Curves in S3 313 Exercises 316 Further reading 317 References 320 Index 327 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I. R. Porteous Frontmatter More information Introduction This book is concerned with the local differential geometry of smooth curves and surfaces in Euclidean space. This is a topic which is generally compressed into a short introductory chapter in any standard work on differential geometry, but nevertheless has a surprising richness, with new areas still being explored. The initial impetus to look afresh at this subject was Rene Thom's choice KK1975), but circulating in draft for several years previous to this data) of the term `umbilic', borrowed from differential geometry, to describe certain of the elementary catastrophes, and the realisation that Darboux's classi®cation K1896) of the umbilics of a surface, itself not suf®ciently known, was only part of the story KPorteous, 1971). In particular the ridges of a surface are important features that are almost entirely disregarded in the standard texts, though certain of them are familiar to structural geologists as the hinge lines of folds in strata KRamsay, 1967). One of the few places where they get serious mention in the literature is in the work K1904) of A. Gullstrand, who was awarded the Nobel Prize for Physiology and Medicine in 1911 for his work on the accommodation of the eye lens, in which work he had to create the necessary fourth order differential geometry to explain the relevant optics. His Prize Lecture K1911) makes amusing reading. Recently they have been rediscovered by workers on face recognition and the interpretation of magnetic resonance scans of the surface of the brain. The work of singularity theorists, starting with H. Whitney, R. Thom and J. Mather and extended by many others, notably the Russian School under the leadership of V. I. Arnol'd, has richly developed the geometry of Taylor series of smooth functions, making accessible and familiar the classi®cation of the higher order critical points of families of smooth xi © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces: Second Edition I.
Recommended publications
  • Ian R. Porteous 9 October 1930 - 30 January 2011
    In Memoriam Ian R. Porteous 9 October 1930 - 30 January 2011 A tribute by Peter Giblin (University of Liverpool) Będlewo, Poland 16 May 2011 Caustics 1998 Bill Bruce, disguised as a Terry Wall, ever a Pro-Vice-Chancellor mathematician Watch out for Bruce@60, Wall@75, Liverpool, June 2012 with Christopher Longuet-Higgins at the Rank Prize Funds symposium on computer vision in Liverpool, summer 1987, jointly organized by Ian, Joachim Rieger and myself After a first degree at Edinburgh and National Service, Ian worked at Trinity College, Cambridge, for a BA then a PhD under first William Hodge, but he was about to become Secretary of the Royal Society and Master of Pembroke College Cambridge so when Michael Atiyah returned from Princeton in January 1957 he took on Ian and also Rolph Schwarzenberger (6 years younger than Ian) as PhD students Ian’s PhD was in algebraic geometry, the effect of blowing up on Chern Classes, published in Proceedings of the Cambridge Philosophical Society in 1960: The behaviour of the Chern classes or of the canonical classes of an algebraic variety under a dilatation has been studied by several authors (Todd, Segre, van de Ven). This problem is of interest since a dilatation is the simplest form of birational transformation which does not preserve the underlying topological structure of the algebraic variety. A relation between the Chern classes of the variety obtained by dilatation of a subvariety and the Chern classes of the original variety has been conjectured by the authors cited above but a complete proof of this relation is not in the literature.
    [Show full text]
  • Evolutes of Curves in the Lorentz-Minkowski Plane
    Evolutes of curves in the Lorentz-Minkowski plane 著者 Izumiya Shuichi, Fuster M. C. Romero, Takahashi Masatomo journal or Advanced Studies in Pure Mathematics publication title volume 78 page range 313-330 year 2018-10-04 URL http://hdl.handle.net/10258/00009702 doi: info:doi/10.2969/aspm/07810313 Evolutes of curves in the Lorentz-Minkowski plane S. Izumiya, M. C. Romero Fuster, M. Takahashi Abstract. We can use a moving frame, as in the case of regular plane curves in the Euclidean plane, in order to define the arc-length parameter and the Frenet formula for non-lightlike regular curves in the Lorentz- Minkowski plane. This leads naturally to a well defined evolute asso- ciated to non-lightlike regular curves without inflection points in the Lorentz-Minkowski plane. However, at a lightlike point the curve shifts between a spacelike and a timelike region and the evolute cannot be defined by using this moving frame. In this paper, we introduce an alternative frame, the lightcone frame, that will allow us to associate an evolute to regular curves without inflection points in the Lorentz- Minkowski plane. Moreover, under appropriate conditions, we shall also be able to obtain globally defined evolutes of regular curves with inflection points. We investigate here the geometric properties of the evolute at lightlike points and inflection points. x1. Introduction The evolute of a regular plane curve is a classical subject of differen- tial geometry on Euclidean plane which is defined to be the locus of the centres of the osculating circles of the curve (cf. [3, 7, 8]).
    [Show full text]
  • The Illinois Mathematics Teacher
    THE ILLINOIS MATHEMATICS TEACHER EDITORS Marilyn Hasty and Tammy Voepel Southern Illinois University Edwardsville Edwardsville, IL 62026 REVIEWERS Kris Adams Chip Day Karen Meyer Jean Smith Edna Bazik Lesley Ebel Jackie Murawska Clare Staudacher Susan Beal Dianna Galante Carol Nenne Joe Stickles, Jr. William Beggs Linda Gilmore Jacqueline Palmquist Mary Thomas Carol Benson Linda Hankey James Pelech Bob Urbain Patty Bruzek Pat Herrington Randy Pippen Darlene Whitkanack Dane Camp Alan Holverson Sue Pippen Sue Younker Bill Carroll John Johnson Anne Marie Sherry Mike Carton Robin Levine-Wissing Aurelia Skiba ICTM GOVERNING BOARD 2012 Don Porzio, President Rich Wyllie, Treasurer Fern Tribbey, Past President Natalie Jakucyn, Board Chair Lannette Jennings, Secretary Ann Hanson, Executive Director Directors: Mary Modene, Catherine Moushon, Early Childhood (2009-2012) Com. College/Univ. (2010-2013) Polly Hill, Marshall Lassak, Early Childhood (2011-2014) Com. College/Univ. (2011-2014) Cathy Kaduk, George Reese, 5-8 (2010-2013) Director-At-Large (2009-2012) Anita Reid, Natalie Jakucyn, 5-8 (2011-2014) Director-At-Large (2010-2013) John Benson, Gwen Zimmermann, 9-12 (2009-2012) Director-At-Large (2011-2014) Jerrine Roderique, 9-12 (2010-2013) The Illinois Mathematics Teacher is devoted to teachers of mathematics at ALL levels. The contents of The Illinois Mathematics Teacher may be quoted or reprinted with formal acknowledgement of the source and a letter to the editor that a quote has been used. The activity pages in this issue may be reprinted for classroom use without written permission from The Illinois Mathematics Teacher. (Note: Occasionally copyrighted material is used with permission. Such material is clearly marked and may not be reprinted.) THE ILLINOIS MATHEMATICS TEACHER Volume 61, No.
    [Show full text]
  • Some Remarks on Duality in S3
    GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS ’98 BANACH CENTER PUBLICATIONS, VOLUME 50 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1999 SOME REMARKS ON DUALITY IN S 3 IAN R. PORTEOUS Department of Mathematical Sciences University of Liverpool Liverpool, L69 3BX, UK e-mail: [email protected] Abstract. In this paper we review some of the concepts and results of V. I. Arnol0d [1] for curves in S2 and extend them to curves and surfaces in S3. 1. Introduction. In [1] Arnol0d introduces the concepts of the dual curve and the derivative curve of a smooth (= C1) embedded curve in S2. In particular he shows that the evolute or caustic of such a curve is the dual of the derivative. The dual curve is just the unit normal curve, while the derivative is the unit tangent curve. The definitions extend in an obvious way to curves on S2 with ordinary cusps. Then one proves easily that where a curve has an ordinary geodesic inflection the dual has an ordinary cusp and vice versa. Since the derivative of a curve without cusps clearly has no cusps it follows that the caustic of such a curve has no geodesic inflections. This prompts investigating what kind of singularity a curve must have for its caustic to have a geodesic inflection, by analogy with the classical construction of de l'H^opital,see [2], pages 24{26. In the second and third parts of the paper the definitions of Arnol0d are extended to surfaces in S3 and to curves in S3. The notations are those of Porteous [2], differentiation being indicated by subscripts.
    [Show full text]
  • A Convex, Smooth and Invertible Contact Model for Trajectory Optimization
    A convex, smooth and invertible contact model for trajectory optimization Emanuel Todorov Departments of Applied Mathematics and Computer Science and Engineering University of Washington Abstract— Trajectory optimization is done most efficiently There is however one additional requirement which we when an inverse dynamics model is available. Here we develop believe is essential and requires a qualitatively new approach: the first model of contact dynamics definedinboththeforward iv. The contact model should be defined for both forward and and inverse directions. The contact impulse is the solution to a convex optimization problem: minimize kinetic energy inverse dynamics. Here the forward dynamics in contact space subject to non-penetration and friction-cone w = a (q w u ) (1) constraints. We use a custom interior-point method to make the +1 1 optimization problem unconstrained; this is key to defining the compute the next-step velocity w+1 given the current forward and inverse dynamics in a consistent way. The resulting generalized position q , velocity w and applied force u , model has a parameter which sets the amount of contact smoothing, facilitating continuation methods for optimization. while the inverse dynamics We implemented the proposed contact solver in our new physics u = b (q w w ) (2) engine (MuJoCo). A full Newton step of trajectory optimization +1 for a 3D walking gait takes only 160 msec, on a 12-core PC. compute the applied force that caused the observed change in velocity. Computing the total force that caused the observed I. INTRODUCTION change in velocity is of course straightforward. The hard Optimal control theory provides a powerful set of methods part is decomposing this total force into a contact force and for planning and automatic control.
    [Show full text]
  • Mathematics 1
    Mathematics 1 MATHEMATICS Courses MATH 1483 Mathematical Functions and Their Uses (A) Math is the language of science and a vital part of both cutting-edge Prerequisites: An acceptable placement score - see research and daily life. Contemporary mathematics investigates such placement.okstate.edu. basic concepts as space and number and also the formulation and Description: Analysis of functions and their graphs from the viewpoint analysis of mathematical models arising from applications. Mathematics of rates of change. Linear, exponential, logarithmic and other functions. has always had close relationships to the physical sciences and Applications to the natural sciences, agriculture, business and the social engineering. As the biological, social, and management sciences have sciences. become increasingly quantitative, the mathematical sciences have Credit hours: 3 moved in new directions to support these fields. Contact hours: Lecture: 3 Contact: 3 Levels: Undergraduate Mathematicians teach in high schools and colleges, do research and Schedule types: Lecture teach at universities, and apply mathematics in business, industry, Department/School: Mathematics and government. Outside of education, mathematicians usually work General Education and other Course Attributes: Analytical & Quant in research and analytical positions, although they have become Thought increasingly involved in management. Firms in the aerospace, MATH 1493 Applications of Modern Mathematics (A) communications, computer, defense, electronics, energy, finance, and Prerequisites: An acceptable placement score (see insurance industries employ many mathematicians. In such employment, placement.okstate.edu). a mathematician typically serves either in a consulting capacity, giving Description: Introduction to contemporary applications of discrete advice on mathematical problems to engineers and scientists, or as a mathematics. Topics from management science, statistics, coding and member of a research team composed of specialists in several fields.
    [Show full text]
  • Differential Geometry from a Singularity Theory Viewpoint
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Matemática - ICMC/SMA Livros e Capítulos de Livros - ICMC/SMA 2015-12 Differential geometry from a singularity theory viewpoint IZUMIYA, Shyuichi et al. Differential geometry from a singularity theory viewpoint. Hackensack: World Scientific, 2015. 384 p. http://www.producao.usp.br/handle/BDPI/50103 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com 9108_9789814590440_tp.indd 1 22/9/15 9:14 am May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws This page intentionally left blank by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com by UNIVERSITY OF SAO PAULO on 03/04/16. For personal use only. Differential Geometry from a Singularity Theory Viewpoint Downloaded www.worldscientific.com 9108_9789814590440_tp.indd 2 22/9/15 9:14 am Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Differential geometry from a singularity theory viewpoint / by Shyuichi Izumiya (Hokkaido University, Japan) [and three others].
    [Show full text]
  • A Brief Introduction to Singularity Theory (A. Remizov, 2010)
    A. O. Remizov A BRIEF INTRODUCTION TO SINGULARITY THEORY Trieste, 2010 1 Lecture 1. Some useful facts from Singularity Theory. Throughout this course all definitions and statements are local, that is, we always operate with ¾sufficiently small¿ neighborhoods of the considered point. In other words, we deal with germs of functioms, maps, vector fields, etc. 1.1 Multiplicity of smooth functions and maps One of the key notions of Singularity Theory is ¾multiplicity¿. Definition 1: Let f(x): R ! R be a smooth (¾smooth¿ means C1) function, and x∗ is its critical point, i.e., f 0(x∗) = 0. Multiplicity of the function f(x) at the critical point x∗ is the order of tangency of the graphs y = f(x) and y = f(x∗) at x∗, i.e., the natural number µ is defined by the condition df dµf dµ+1f (x∗) = 0;:::; (x∗) = 0; (x∗) 6= 0: (1.1) dx dxµ dxµ+1 If such natural number µ does not exist, then we put µ = 1 and the function f(x) − f(x∗) is called ¾1-flat¿ or simply ¾flat¿ at the point x∗. We also put µ = 0 for non-critical points. Critical points with infinite multiplicity can occur, but we will deal only with finite multiplicities. If µ = 1, then the critical point x∗ is called ¾non-degenerated¿. Exercise 1. Prove that any function f with µ < 1 can be simplified to the form f(x) = f(x∗) ± (x − x∗)µ+1 by means of a smooth change of the variable x (the sign ± coincides with the sign of the non-zero derivative in (1.1)).
    [Show full text]
  • In Particular, Line and Sphere Complexes – with Applications to the Theory of Partial Differential Equations
    “Ueber Complexe, insbesondere Linien- und Kugel-complexe, mit Anwendung auf die Theorie partieller Differentialgleichungen,” Math. Ann. 5 (1872), 145-208. On complexes −−− in particular, line and sphere complexes – with applications to the theory of partial differential equations By Sophus Lie in CHRISTIANIA Translated by D. H. Delphenich _______ I. The rapid development of geometry in our century is, as is well-known, intimately linked with philosophical arguments about the essence of Cartesian geometry, arguments that were set down in their most general form by Plücker in his early papers. For anyone who proceeds in the spirit of Plücker’s work, the thought that one can employ every curve that depends on three parameters as a space element will convey nothing that is essentially new, so if no one, as far as I know, has pursued this idea then I believe that the reason for this is that no one has ascribed any practical utility to that fact. I was led to study the aforementioned theory when I discovered a remarkable transformation that represented a precise connection between lines of curvature and principal tangent curves, and it is my intention to summarize the results that I obtained in this way in the following treatise. In the first section, I concern myself with curve complexes – that is, manifolds that are composed of a three-fold infinitude of curves. All surfaces that are composed of a single infinitude of curves from a given complex satisfy a partial differential equation of second order that admits a partial differential equation of first order as its singular first integral.
    [Show full text]
  • Frictional Contact on Smooth Elastic Solids
    Frictional Contact on Smooth Elastic Solids EGOR LARIONOV, University of British Columbia, Canada YE FAN, Vital Mechanics, Canada DINESH K. PAI, University of British Columbia and Vital Mechanics Research, Canada Fig. 1. A rigid whiskey glass is pinched between the index finger and thumb of an animated hand model and lifted up. The first frame shows the internal geometry of the distal phalanges whose vertices drive the finger tips of the tetrahedral simulation mesh of the hand. The remaining hand bones and tendons (not shown) are used to determine other interior animated vertices. The following frames show a selection of frames from the resulting simulation showing the grasp, lift and hold of the glass. The last image shows a photo of a similar scenario for reference. The collision surface of the hand is represented byanimplicit function approximating a smoothed distance potential, while the glass surface is sampled using discrete points. Our method produces realistic deformation at the point of contact between the fingers and the rigid object. Frictional contact between deformable elastic objects remains a difficult ACM Reference Format: simulation problem in computer graphics. Traditionally, contact has been Egor Larionov, Ye Fan, and Dinesh K. Pai. 2021. Frictional Contact on Smooth resolved using sophisticated collision detection schemes and methods that Elastic Solids. ACM Trans. Graph. 40, 2, Article 15 (April 2021), 17 pages. build on the assumption that contact happens between polygons. While https://doi.org/10.1145/3446663 polygonal surfaces are an efficient representation for solids, they lack some intrinsic properties that are important for contact resolution. Generally, polygonal surfaces are not equipped with an intrinsic inside and outside 1 INTRODUCTION partitioning or a smooth distance field close to the surface.
    [Show full text]
  • Contact Singularities in Nonstandard Slow-Fast Dynamical Systems
    Contact singularities in nonstandard slow-fast dynamical systems Ian Lizarraga, Robby Marangell, and Martin Wechselberger School of Mathematics and Statistics, University of Sydney, Camperdown 2006, Australia Abstract We develop the contact singularity theory for singularly-perturbed (or ‘slow-fast’) vector fields of the general form z′ = H(z, ε), z Rn and ε 1. Our main result ∈ ≪ is the derivation of computable, coordinate-independent defining equations for contact singularities under an assumption that the leading-order term of the vector field admits a suitable factorization. This factorization can in turn be computed explicitly in a wide variety of applications. We demonstrate these computable criteria by locating contact folds and, for the first time, contact cusps in some nonstandard models of biochemical oscillators. 1 Introduction Classifying the loss of normal hyperbolicity of the critical manifold is a fundamental step in the analysis of slow-fast dynamical systems. For systems in the so-called standard form1 x′ = εg(x,y,ε) y′ = f(x,y,ε), (1) the k-dimensional critical manifold lies inside the zero set of a smooth mapping f(x, y, 0) : Rn Rn−k. Loss of normal hyperbolicity occurs along points where the critical manifold becomes→ tangent to the layer problem of (1), formally defined by the ε 0 limit: → x′ = 0 y′ = f(x, y, 0). (2) In the planar case x, y R, the solutions of the layer flow consist of trajectories lying within vertical lines x = c (also∈ known as fast fibers). In general, solutions of the layer flow lie in arXiv:2004.01825v1 [math.DS] 4 Apr 2020 hyperplanes orthogonal to the coordinate axes of the slow variable x Rk.
    [Show full text]
  • View Both Marks to Assess Orientation; Simply Look for the 6 O’Clock Mark As You Would with a Prism-Ballasted Lens
    IMPORTANT: Please read carefully and keep this information for future use. This Package Insert and Fitting Guide is intended for the Eye Care Professional, but should be made available to patients upon request. The Eye Care Professional should provide the patient with the appropriate instructions that pertain to the patient’s prescribed lenses. Copies are available for download at www.acuvue.com. 1-DAY ACUVUE® MOIST® Brand Contact Lenses 1-DAY ACUVUE® MOIST® Brand Contact Lenses for ASTIGMATISM 1-DAY ACUVUE® MOIST® Brand MULTIFOCAL Contact Lenses etafilcon A Soft (hydrophilic) Contact Lenses Visibility Tinted with UV Blocker for Daily Disposable Wear CAUTION: U.S. Federal law restricts this device to sale by or on the order of a licensed practitioner. SYMBOLS KEY The following symbols may appear on the label or carton: SYMBOL DEFINITION Consult Instructions for Use Manufactured by or in Date of Manufacture Use By Date (expiration date) Batch Code Sterile Using Steam or Dry Heat DIA Diameter BC Base Curve D Diopter (lens power) CYL Cylinder AXIS Axis MAX ADD Near ADD LOW “Low” near ADD MID “Medium” near ADD HGH “High” near ADD Quality System Certification Symbol UV-Blocking Fee Paid for Waste Management CAUTION: U.S. Federal law restricts this device to sale by or on the order of a licensed practitioner Lens Orientation Correct Lens Orientation Incorrect (Lens Inside Out) Lens Orientation Correct Lens Orientation Incorrect (Lens Inside Out) 2 DESCRIPTION The 1-DAY ACUVUE® MOIST® Brand Contact Lenses, 1-DAY ACUVUE® MOIST® Brand Contact Lenses for ASTIGMATISM, and 1-DAY ACUVUE® MOIST® Brand MULTIFOCAL Contact Lenses are soft (hydrophilic) contact lenses available as spherical, toric, and multifocal lenses and include LACREON® Technology.
    [Show full text]