Worksheet 8.1 Advanced Periodic Logarithmic and Exponential Functions
Total Page:16
File Type:pdf, Size:1020Kb
Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 1
WorkSHEET 8.1 Advanced Periodic Logarithmic and Exponential Functions
Name: ______
1 Using de Moivre’s theorem and the binomial z cos i sin expansion, prove that z 2 cos isin 2 cos2 cos2 sin 2 2cos2 1 Using de Moivre’s theorem, z 2 cos 2 i sin 2 Writing the binomial expansion of z 2 , we have z 2 cos2 sin 2 2i cos sin cos 2 cos2 sin 2 Applying the Pythagorean Identity, sin 2 1 cos2 cos 2 cos2 1 cos2 2cos2 1 cos 2 cos2 sin 2 2cos2 1
2 Using the multiple angle formulas, prove that 2sin 4x cos 2x
2sinx cos x = sin x sin x 1 4 4 1 2 2 2 z z z z 2i 2 1 z 4 z 4 z 2 z 2 2i 1 z 6 z 2 z 2 z 6 2i 1 z 6 z 6 z 2 z 2 2i z 6 z 6 z 2 z 2 2i 2i sin 6x sin 2x Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 2
1 3 4 1 z z Prove that sin x cos4x 4cos2x 3 sin x 8 2i 4 z z 1 sin 4 x 16 4 z z 1 z 4 4z 3.z 1 6z 2 .z 2 4z.z 3 z 4 z 4 z 4 4z 2 z 2 6 2cos 4x 4 2cos 2x 6 2cos 4x 8cos 2x 6 1 sin 4 x 2cos 4x 8cos 2x 6 16 2 cos 4x 4cos 2x 3 16 1 cos 4x 4cos 2x 3 8
4 2 i 2i Express in standard form. 2e 3 2e 3 2 2 2cos 2isin 3 3 1 3 2 2i 2 2 1 i 3
5 If u 3 i and w 1 i, u 3 i, w 1 i (a) express both u and w in Euler’s form. (a) u 2 u is a complex number in the 4th quadrant of the complex plane argu 6 i u 2e 6 w 2 w is in the first quadrant of the complex plane arg w 4 i w 2 e 4
u 3 (b) express in standard form. (b) w5 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 3
i u 3 23 e 2 w5 5 5i 2 2 e 4 i 8e 2 3i 4 2 e 4 i 2 e 4 2 2 1 i 2 2 2 1 i
5 (c) find values for m and n such that (c) (Cont.) um w n 8 i . u m wn 8i LHS u m wn mi n ni 2m e 6 .2 2 e 4 n n m m i 2 2.e 4 6 n 3n2m m i 2 2.e 12 i RHS 23 e 2 n m 23 2 2 n i.e. 3 m 2 2m n 6 3n 2m 1 and 2k for an integer k. 12 2 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 4
i.e. 3n 2m 6 24k and n 2m 6 4n 12 24k n 3 6k 2m 6 n 6 3 6k 2m 3 6k i.e. m 1.5 3k There is an infinite solution set given by m 1.5 3k and n 3 6k for integer k. Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 5
6 Apply Euler’s formula to evaluate e x sin2x dx x esin x d x e2ix cos 2x isin 2x Ime2ix sin 2x e x sin2x dx e x Ime2ix dx Ime x .e2ix dx Ime12ix dx e12ix Im 1 2i e12ix 1 2i Im 1 2i 1 2i e12ix 1 2i Im 5 x e 2ix Im .e 1 2i 5 e x Im cos 2x isin 2x1 2i 5 e x Im cos 2x 2i cos 2x i sin 2x 2sin 2x 5 e x ie x Im cos 2x 2sin 2x sin 2x 2cos 2x 5 5 e x sin2x dx e x sin 2x 2cos 2x c 5
7 (a) Sketch the function y= ex cos( x) over (a) Here, cos x is squeezed between the x the domain x . envelopes e . Graph y ex and then squeeze y cos x between the envelopes Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 6
x (b) Determine lim e cosx x
(b) limex cosx 0 ex converges rapidly to zero while cos x oscillates between 1. Hence ex cosx oscillates towards y 0 as x increases.
7 (Cont.) (c) Evaluate ex cosxdx (c) ex cos x dx 0 0 Consider I ex cos x dx Apply the parts formula. d I ex sin x dx dx d ex sin x ex sin x dx dx ex sin x ex sin x dx Now consider ex sin x dx d ex sin x dx ex cos x dx dx ex cos x ex cos x dx ex cos x I i.e. I ex sin x ex cos x I 2I ex sin x ex cos x ex sin x cos x 1 I ex sin x cos x 2 Hence, Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 7
n ex cos x dx lim ex cos x dx n 0 0 ex cos x dx 0 1 n lim e sin n cos n n2 1 0 e sin0 cos0 2 1 0 1 2 1 . 2
8 (a) Find the set of complex numbers zn (a) n 3 where n = 1, 2 and 3 given that 2ik zn exp 3 n 2ik k1 3 z exp n n 1, 2, 3. k1 3 1 2i z1 exp k1 3 2i e 3 1 3 z i 1 2 2 2 2ik 3 z2 exp k1 3 2i 16i e 3 e 3 1 3 1 3 i i 2 2 2 2
z2 1 3 2ik 3 z3 exp k1 3 1 3 1 3 18i i i e 2 2 2 2 11 0 1 3 zn i, 1, 0 2 2
(b) Graph zn in the complex plane joining (b) Plot each point in the sequence in the Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 8
the points together to form a closed complex plane. Join them together. The figure. What shape is this figure? figure formed is an equilateral triangle.
9 Show that n n sink sink Imei e2i e3i ⋯⋯ ein k1 k1 sin sin2 sin3 sinn ei cos i sin Imei sin Likewise Imeik sin k n sin k k1 Imei Ime2i Ime3i Imeni Imei e2i e3i eni
10 Given that x et cosat represents the displacement of a particle at time t, (a) show that x˙t et cosat asinat (a) x et cosat dx x˙ dt dx d et cosat et cosat dt dt et cosat aet sinat x˙ et cosat asinat
(b) If x˙ 0 show that (b) 1 x˙ 0 tana , a 0 a e cosa asina 0 i.e. cosa asina 0 asina cosa 1 tana a provided a 0 Maths Quest Maths C Year 12 for Queensland Chapter 8 Advanced Periodic Functions WorkSHEET 8.1 9
1 (c) Solve tana . (c) By making appropriate use of graphics a calculator functions, find the first positive HINT: Use a ‘solver’ routine in the 1 value of a for which tan a . graphics calculated to show that a a 0.383.